API trustworthiness: an ontological
approach for software library adoption

Ellis E. Eghan, Sultan S. Algahtani,
Christopher Forbes & Juergen Rilling

Software Quality Journal
ISSN 0963-9314

Software
Quality
Journal

Software Qual J
DOI 10.1007/s11219-018-9428-4

@ Springer

Your article is protected by copyright and

all rights are held exclusively by Springer
Science+Business Media, LLC, part of
Springer Nature. This e-offprint is for personal
use only and shall not be self-archived in
electronic repositories. If you wish to self-
archive your article, please use the accepted
manuscript version for posting on your own
website. You may further deposit the accepted
manuscript version in any repository,
provided it is only made publicly available 12
months after official publication or later and
provided acknowledgement is given to the
original source of publication and a link is
inserted to the published article on Springer's
website. The link must be accompanied by
the following text: "The final publication is
available at link.springer.com”.

@ Springer

Software Quality Journal
https://doi.org/10.1007/s11219-018-9428-4

@ CrossMark

API trustworthiness: an ontological approach for software
library adoption

Ellis E. Eghan’ - Sultan S. Algahtani' - Christopher Forbes - Juergen Rilling'

Published online: 04 February 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

The globalization of the software industry has led to an emerging trend where software
systems depend increasingly on the use of external open-source external libraries and appli-
cation programming interfaces (APIs). While a significant body of research exists on identi-
fying and recommending potentially reusable libraries to end users, very little is known on the
potential direct and indirect impact of these external library recommendations on the quality
and trustworthiness of a client’s project. In our research, we introduce a novel Ontological
Trustworthiness Assessment Model (OntTAM), which supports (1) the automated analysis and
assessment of quality attributes related to the trustworthiness of libraries and APIs in open-
source systems and (2) provides developers with additional insights into the potential impact of
reused libraries and APIs on the quality and trustworthiness of their project. We illustrate the
applicability of our approach, by assessing the trustworthiness of libraries in terms of their API
breaking changes, security vulnerabilities, and license violations and their potential impact on
client projects.

Keywords Software quality - Trustworthiness - Code reuse - License violations - API breaking
changes - Software security vulnerabilities

P4 Juergen Rilling
juergen.rilling @concordia.ca

Ellis E. Eghan
e_eghan@encs.concordia.ca

Sultan S. Alqahtani
s_alqaht@encs.concordia.ca

Christopher Forbes
¢_forb@encs.concordia.ca

Department of Computer Science and Software Engineering, Concordia University, Montreal,
Canada

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-018-9428-4&domain=pdf
http://orcid.org/0000-0002-5441-0385
mailto:juergen.rilling@concordia.ca

Software Quality Journal

1 Introduction

Traditional software development processes, with their focus on closed architectures, platform-
dependent tools and software, restrict potential code reuse. With the introduction of the
Internet, these restrictions have been removed, allowing for global access, online collaboration,
information sharing, and internationalization of the software industry (Gao et al. 1999).
Software development and maintenance tasks can now be shared among team members
working across and outside organizational boundaries. Code reuse through resources such as
software libraries, components, services, design patterns, and frameworks published on the
Internet has become an essential aspect of this global code reuse and sharing among developers
and organizations within the software engineering industry. Most of today’s software projects
increasingly depend on the usage of external libraries, which allows software developers to
take advantage of features provided by application programming interfaces (APIs) without
having to reinvent the wheel. Unfortunately, even though third-party libraries are readily
available, developers are faced with new challenges with this new form of code reuse, such
as being unaware of the existence of libraries, selecting the most relevant library among several
possible alternatives, and how to use features provided by these libraries (Thung et al. 2013;
Rahman et al. 2016).

Several software library recommendation approaches have been proposed to address these
challenges. These approaches fall into two main categories: (1) recommendation systems for
libraries and APIs based on characteristics such as popularity (Mileva et al. 2010), frequency
of migration (Teyton et al. 2012; Hora and Valente 2015), and stability (Raemackers et al.
2012), without considering the context of use of these libraries, and (2) techniques that take a
client’s context into account when recommending libraries (e.g., using the history of method
usages by developers; McCarey et al. 2005).

However, reused software libraries should not only satisfy a client’s functional require-
ments; they must also satisfy non-functional requirements (NFRs) such as security, safety, and
dependability (Parnas 1994), which are critical to the success of software systems. NFRs are
often referred to as system qualities and can be divided into two main categories: (1) execution
qualities—qualities which are observable at runtime (e.g., performance and usability), and (2)
evolution qualities, such as testability, trustworthiness, maintainability, extensibility, and
scalability, which are embodied in the static structure of a software system. NFRs often play
a critical role in the acceptance and trust users will have in a final software product. However,
assessing and evaluating the trustworthiness of today’s software systems and software ecosys-
tems remains a challenge due to issues ranging from a lack of traceability among software
artifacts to limited tool support.

Trustworthiness is also an inherently subjective and ubiquitous term since its interpretation
depends on the assessment context of the stakeholder, which might be different among
stakeholders and the context of use in which the library is used. Assessment models, therefore,
should provide the flexibility and customizability to take into account such specific application
contexts and the particular assessment needs of stakeholders (Hmood et al. 2012).

In our prior works (Algahtani et al. 2017; Algahtani et al. 2016), we introduced our Security
Vulnerabilities Analysis Framework (SV-AF), a semantic modeling approach which estab-
lishes traceability links between security and software databases such as build repositories and
version control repositories. We also introduced a generic quality assessment model (SE-
EQUAM) (Hmood et al. 2012) which uses ontologies to model and conceptualize quality
factors, sub-factors, attributes, measures, weights, and relationships used to assess software

@ Springer

Software Quality Journal

quality. The work in this paper is a continuation of these previous works on semantic modeling
and tracing of software security vulnerabilities, semantic analysis, and quality assessment. In
what follows, we present our Ontology-Based Trustworthiness Assessment Model (OntTAM),
which is an instantiation and extension of our SE-EQUAM assessment model (Hmood et al.
2012), for the domain of software library trustworthiness. OntTAM supports new semantic
analysis for software license compatibility and the impact of API breaking changes, as well as
our existing vulnerability analysis.

More specifically, we illustrate how OntTAM can be instantiated to take advantage of our
existing unified knowledge representation of different software engineering-related knowledge
resources and support an automated analysis and assessment of trustworthiness quality
attributes of libraries. We argue that ontologies not only promote and support the conceptual
representation of knowledge resources in software ecosystems but also let us take advantage of
semantic reasoning during the assessment of trustworthiness quality factors. Furthermore, our
modeling approach allows for the customization of the trustworthiness assessment model to
reflect specific assessment needs while at the same time facilitates the comparison of trust-
worthiness across projects, by defining a standard set of measures and sub-factors.

Our research is significant for several reasons:

1) We introduce OntTAM, a novel trustworthiness assessment model that takes advantage of
both our previous generic SE-EQUAM software assessment model (Hmood et al. 2012)
and our unified ontological knowledge representation of different SE-related knowledge
resources (Hmood et al. 2012; Alqahtani et al. 2017; Alqahtani et al. 2016) while
supporting the customization of the model to meet a stakeholder’s assessment needs.

2) We introduce as part of OntTAM, novel trustworthiness measures, which measure API
breaking changes, security vulnerabilities, and license violations. These measures take
advantage of our ontologies and semantic reasoning services to allow for a trustworthiness
analysis across the boundaries of individual artifacts and projects.

3) We report on a case study that illustrating how our approach can be applied to assess the
trustworthiness of OSS libraries and discuss the potential impact of these libraries on the
trustworthiness of the overall system.

The remainder of the paper is organized as follows: Section 2 provides an illustrative example
to motivate the significance of this work. Section 3 provides background related to the
implications of reusing software libraries, the semantic web technologies, and an existing
framework for analyzing software quality. We present our research overview and methodology
in Section 4. Case study experiments and a discussion of our findings are presented in
Section 5. Related work and potential threats to validity are discussed in Sections 6 and 7,
respectively. Finally, Section 8 offers concluding remarks and outlines future research
directions.

2 Motivating example

In what follows, we introduce a motivating example (Fig. 1) describing how our fictional
software developer (Bob) attempts to reuse external libraries while facing several challenges
during selecting the best library for his project while reducing their negative effect on the

trustworthiness of his own project.

@ Springer

Software Quality Journal

OntTAM

ob’s Development Contex

Derby
10110
- @

/" General -
Concepts

vaner T
License
e Violation with
B

//SEEQUAM | SV-AF
OntTAM Model

Domain Specific Concepts

application

Libraries being
indirectly reused

Libraries being
directly reused

sys(em Specific Concepts

explois| Source| Issve | Liense
{/ NVD| OSVD8 | o5 | Coges | Tracing Iformation Mitor | Mave

Fig. 1T Motivating example—how OntTAM can assist developers in trust assessment

Bob is currently developing an application which requires an embedded database. Bob tries
to reduce his development effort, by searching the Internet for possible third-party libraries and
components which meet his work context. His search returns Apache Derby,' an open-source-
embedded database management systems (DBMS) implemented entirely in Java. However,
Bob is faced now with the dilemma of deciding upon which version of Derby he should be
using—the most recent (Derby version 10.11.1.1) or the most widely used one (Derby version
10.1.1.0). Following the recommendations published in the existing research (e.g., Mileva
et al. 2009), Bob decides to use an older version of Apache Derby (version 10.1.1.0) due to its
widespread usage/popularity. However, this recommendation results in the reuse of a compo-
nent, which contains three known security vulnerabilities that are already reported in the
National Vulnerability Database (NVD) (Table 1). In contrast, the newer version of Derby
(version 10.11.1.1) does not contain any known vulnerabilities.

However, this is not the only risk Bob is susceptible to when selecting a library. Derby is
licensed under the Apache 2 copyright license; for Bob not to introduce any license violation
or incompatibility, he has to make sure that the selected library is compliant with his project
license. For example, one cannot combine code released under the Apache 2 license with code
released under the GNU GPL 2 (F. S. Foundation 2014).

As this example illustrates, several quality-related issues with the reuse of third-party library
can arise and they are often difficult to discover by the user, since the relevant information is
spread across multiple knowledge resources. The problem is further exacerbated by the large
number of additional transitive dependencies which are introduced by these third-party
libraries and their dependencies. A vulnerability or license violation might not occur directly
between Bob’s project and the Derby library, but also between Bob’s project and one of the
libraries the Derby library depends on.

3 Background

3.1 External library reuse and its implications on project quality

As previously discussed, reuse of functionality provided by third-party (external) software libraries is
a growing trend in the software development industry. Automated dependency management features

! db.apache.org/derby/

@ Springer

http://db.apache.org/derby

Software Quality Journal

Table 1 Example of Derby versions and their depedent projects in Maven

Derby version Release year Reported vulnerabilities in NVD Direct dependencies in Maven repository

10.1.1.0 2005 3 382
10.5.3.0 2009 1 0
10.11.1.1 2014 0 36

have been introduced in modern build systems to simplify the integration and reuse of external
libraries during development. Developers no longer have to manually manage their dependencies on
software libraries. Build systems and dependency management tools automatically download and
manage all required dependent components (including transitive dependencies) and perform any
necessary dependency mediation (conflict resolution) when multiple versions of a dependency are
encountered. Although this relieves developers from some of the dependency management, there
remains an increased risk of including libraries which can negatively affect a project’s overall quality
and trustworthiness. In our research, we particularly consider the following quality risks introduced
by software libraries: API breaking changes, security vulnerabilities, and license violations. In what
follows, we briefly introduce background information about API breaking changes, security
vulnerabilities, and license violations.

3.1.1 API breaking changes

Software libraries take advantage of visibility modifiers (e.g., public and protected modifiers in
Java) to provide reusable and extendable APIs to other applications. However, these software
libraries, as other software components, are subtle to change as they evolve over time.
Unfortunately, the cost of evolving libraries may become higher, since such changes might
impact many external clients. API changes can be classified into breaking and non-breaking
changes (see Table 2) and can be defined as follows (Xavier et al. 2017):

* Breaking changes: any change that breaks backward compatibility through removal or
modification of API elements, resulting in compilation errors in the client projects after the
API update.

* Non-breaking changes: changes that preserve compatibility and usually involve the
addition of new functionalities to the library. Thus, allowing to migrate between API
versions which include only non-breaking changes does not cause negative effects to client
applications.

Table 2 Breaking and non-breaking changes

Category API List of changes
element

Breaking Type Removal, visibility loss, super-type change
Field Removal, visibility loss (e.g., public to private), type change (e.g., double to integer),
default value change
Method Removal, visibility loss, return type change (e.g., Boolean to void), parameter list
change, exception list change
Non-breaking All Addition, visibility gain (e.g., from private to public or protected), deprecation (e.g.,
deprecated method removal)

@ Springer

Software Quality Journal

Table 3 The most common breaking and non-breaking changes in the Maven repository (Raemackers et al. 2014)

Breaking changes Non-breaking changes

No. Change type Frequency No. Change type Frequency
1 Method removed 177,480 1 Method added 518,690
2 Class removed 168,743 2 Class added 216,117
3 Field removed 126,334 3 Field added 206,851
4 Parameter type change 69,335 4 Interface added 32,569
5 Method return type change 54,742 5 Method removed, inherited still exists 25,170
6 Interface removed 46,852 6 Field accessibility increased 24,954
7 Number of arguments changed 42,286 7 Value of compile-time constant changed 16,768
8 Method added to interface 28,833 8 Method accessibility increased 14,630
9 Field type changed 27,306 9 Addition to list of superclasses 13,497
10 Constant field removed 12,979 10 Method no longer final 9202

Table 3 shows the top 10 breaking and non-breaking changes in the Maven repository as
reported by Raemaekers et al. (2014). These breaking changes are obtained from 126,070 pairs
of current and next versions of software libraries hosted in the Maven repository. The most
frequent observed breaking change is method removals (177,480 observed occurrences). A
method removal is considered to be a breaking change if the removal leads to compilation
errors in places where this method is used. The most frequently non-breaking API change is
method additions, with 518,690 occurrences. Although performing a change to a library might
be a straightforward task, resulting breaking changes can have a significant ripple effect, which
often will not only affect a single dependent class but even complete ecosystems.

3.1.2 Software security vulnerabilities

In the software security domain, a software vulnerability refers to mistakes or facts related to
security problems in software, networks, computers, or servers. Such vulnerabilities represent
security risks that can be exploited by hackers to gain access to system information or
capabilities (Williams and Dabirsiaghi 2012). Among these systems, reuse of software libraries
poses a significant threat, since vulnerabilities in a single component might affect many
different systems across the globe.

Advisory databases (e.g., NVD) were introduced to provide a central place for reporting
vulnerabilities and standardize their reporting and to raise developer awareness about the
existence of such vulnerabilities. These databases rely on the Common Vulnerabilities and
Exposures (CVE)? dataset, a publicly available dictionary for vulnerabilities which allow for a
more consistent and concise use of security terminology in the software domain. Once a new
vulnerability is revealed and verified by security experts, information about this vulnerability
(e.g., unique identifier, source URL, vendor URL, affected resources, and related vulnerabilities
information) are added to the CVE database. In addition to the CVE entry, each vulnerability
will also be classified using the Common Weakness Enumeration (CWE)?® database. The CWE
provides a common language to describe and classify software security vulnerabilities based on
their type of weakness. NVD, CVE, and CWE can be considered as being part of a global effort
to manage the reporting and classification of known software vulnerabilities.

2 https://cve.mitre.org/
3 https://cwe.mitre.org/

@ Springer

https://cve.mitre.org
https://cwe.mitre.org

Software Quality Journal

While these databases are knowledge-rich resources, they often remain information silos,
being disconnected from other knowledge in the software development domain (e.g., code
repositories or issue trackers). These information silos are caused by (1) a lack of standardized
formalism for representing knowledge in the software engineering domain, (2) the resulting
inability to integrate seamlessly heterogeneous knowledge resources that would allow for both
establishing semantic links across existing knowledge and inferring new knowledge, and (3)
the lack of uniform resource identifiers that would support fact and analysis results sharing for
consumption by either humans or machines across knowledge resource boundaries.

3.1.3 License violations

While dependency management tools, such as RubyGems,* Maven,” or CocoaPods,® have
been introduced to automate the downloading and importing of libraries into projects, these
libraries still originate from various authors and come with a plethora of OSS licenses
(horizontal increase). One library can utilize another library, leading to hierarchies of libraries
and license dependencies. All of these libraries’ licenses must be compatible and compliant
with each other. License violations and incompatibilities are an often overlooked factor when
recommending licenses and therefore can significantly impact the trustworthiness of software
systems. When incompatible licenses are used together, a license violation occurs. A license
violation is defined as “the act of making use of a (licensed) work in a way that violates the
rights expressed by the original creator” (Seneviratne et al. 2009). That is, not following the
legal terms and conditions set out in the source license. Software authors who commit a license
violation open themselves to the possibility of being sued; sometimes this risk can amount to
millions of dollars.

3.2 Ontologies and Semantic Web

The Semantic Web has been defined by Berners-Lee et al. as “an extension of the Web, in which
information is given well-defined meaning, better enabling computers and people to work in
cooperation” (Berners-Lee et al. 2001). It forms a Web from documents to data, where data
should be accessed using the general Web architecture (e.g., URISs). Using this Semantic Web
infrastructure allows data to be linked, just as documents (or portions of documents) are already,
allowing data to be shared and reused across application, enterprise, and community bound-
aries. In a Semantic Web, data can be processed by computers as well as by humans, including
inferring new relationships among pieces of data. For machines to understand and reason about
knowledge, this knowledge needs to be represented in a well-defined, machine-readable
language. Ontologies provide a formal and explicit way to specify concepts and relationships
in a domain of discourse. The Semantic Web uses the Resource Description Framework (RDF)
as its data model to formalize the meta-data as subject-predicate-object triples, which are stored
in triplestores. Triplestores are database management systems (DBMS) for data modeled using
RDF. Unlike relational database management systems (RDBMS), which store data in relations
(or tables) and are queried using SQL, triplestores store RDF triples and are queried using
SPARQL (Berners-Lee et al. 2001). The RDF data model is domain independent and users

* https://rubygems.org/
3 search.maven.org
© https://cocoapods.org/

@ Springer

https://rubygems.org
http://search.maven.org
https://cocoapods.org

Software Quality Journal

define ontologies using an ontology definition language. The Web Ontology Language (OWL)
(McGuinness and Van Harmelen 2004) is an example of such a definition language and has
been standardized by the W3C.” It supports the creation of machine-understandable information
to enable Web resources to be automatically processed and integrated. The sub-language,
OWL-DL, is based on description logics (DLs) (Mann 2003). DL is a logic-based formalism
using predicate calculus to define facts that can formally describe a domain. Therefore, DLs are
a set of axioms called a TBox (e.g., Doctor E Person) and set of facts called ABox (e.g.,
{Parent(John), hasChild(John, Mary)}). Both TBox and ABox form a knowledge base (KB)
and often written K = <7, A>. The RDF data model forms a graph where nodes (subject,
object) are connected through edges (predicates). The SPARQL query language (DuCharme
2011) is used to retrieve information from RDF data model graphs.

Ontologies vs. models A model is “an abstraction that represents some view on reality,
necessarily omitting details, and for a specific purpose” (Henderson-Sellers 2011). However, in
SE, ontologies and models try to address the same problems (representing the software complex-
ity in an abstract manner) but from very different perspectives. The differences between ontol-
ogies and models often result in different artifacts, uses, and possibilities. For example, modern SE
practices advice developers to look for components that already exist when implementing
functionality, since reuse can avoid rework, save money, and improve the overall system quality
(Witte et al. 2007). In this example, ontologies can provide clear advantages over models in
integrating information that normally resides isolated in several separate component descriptions.
Furthermore, models (e.g., UML) rely on the closed world assumption, while ontologies (e.g.,
OWL) support open-world semantics. OWL, an example of ontology languages, is a
“computational logic-based language” that supports full algorithmic decidability in its OWL-
DL (description logic) variant. It is not possible to use algorithms supported by OWL (e.g.,
subsumption) for modeling languages due to their different semantics. Additional differences
between ontologies and models are reported and discussed in Atkinson et al. (2006).

3.3 Evolvable quality assessment metamodel (SE-EQUAM)

Quality is a widely used term to evaluate the maturity of development processes within an
organization. Defining quality allows organizations to specify and determine if a product has
met certain non-functional and functional requirements. However, as Kitchenham (Hmood
et al. 2010) states: “quality is hard to define, impossible to measure, easy to recognize.” Unlike
functional requirements, where a single analysis technique (e.g., use case modeling) is
sufficient to identify essentially all requirements, the same analysis is not appropriate for all
quality requirements. Quality, as defined by ISO 9000:2000 (Hmood et al. 2010), is the
“degree to which a set of inherent characteristics fulfills requirements,” where a requirement
is a “need or expectation that is stated, generally implied or obligatory.”

Assessing the evolvability of software systems has been addressed in existing research
through the introduction of software quality models, e.g., McCall et al. (1977), ISO/IEC 9126,%
and QUALOSS (Bergel et al. 2009). These models share a common, while informal (not
machine-readable), structural representation of software qualities (Fig. 2).

7 https://www.w3.org/
8 https://www.iso.org/obp/ui/#iso:std:39752:en

@ Springer

http://www.w3.org
https://www.iso.org/obp/ui/#iso:std:39752:en

Software Quality Journal

K— Measure
Metric 1 / Measure

Quality

Attribute 1 Metric 2
Quality
Subfactor 1 Metric 3
Quality
i Measure
Quality Attribute 2 N— N
Factor 1 Metric 1
Measure
wim T~
. - "
Quality Quality Attribute 1 Metric 1
Dimension 1 Subfactor 2 ~— Metric 2
Quality
Quality Attribute 2
Factor 2
Digl::sl:zns Quality Quality Quality Quality Quality
Factors Subfactors Attributes Metrics Measures

(optional)

Fig. 2 Generic structure of quality assessment models (Hmood et al. 2010)

While these models are capable of assessing qualities in a given context, they lack the
required formalism and semantics to allow them to evolve to meet the modeling requirements
of different assessment contexts. The ability to adjust to change assessment needs was the main
motivation for SE-EQUAM, an Evolvable QUAIlity Meta-model that derives a formal
(machine-readable) domain model that can adapt to changes in the assessment needs in terms
of both artifacts being assessed and their assessment criteria (Hmood et al. 2012). SE-EQUAM
addresses these challenges by taking advantage of the Semantic Web and its supporting
technologies. SE-EQAM uses ontologies to model and conceptualize quality factors, sub-
factors, attributes, measures, weights, and relationships used to assess software quality. Input
artifacts for the assessment model are various software artifacts such as version control systems
and issue trackers, and its outputs are quality assessment scores based on the different
assessment criteria. Ontologies not only provide a formal way to represent knowledge but
also can eliminate ambiguity, enable validation, and provide a consistency-checking approach
(Seedorf and Mannheim 2006). SE-EQUAM uses semantic reasoners to infer hidden relation-
ships between domain model attributes. Given its formal representation, SE-EQUAM allows
for its reuse by simplifying the instantiation of new domain-specific instances of the model.
More details about the semantic reasoning are provided in Hmood et al. (2012).

Figure 3 illustrates the reuse and instantiation of our SE-EQAM model. The generic syntactic
meta-model, which is a generic model that forms the basis for all quality models, can be instantiated
by a domain model (e.g., ISO/IEC 9126). Furthermore, SE-EQUAM allows for a semantic
mapping between the syntactical meta-model and a semantic ontology meta-model, which can
then be instantiated as domain model ontology based on user-defined assessment criteria.

The SE-EQUAM process The general SE-EQUAM process (Fig. 4) represents a set of tasks
and activities which we followed to allow for deriving a generic quality assessment method
that can be used to customize and instantiate the generic model to meet a stakeholder’s specific
quality assessment context.

The input to the SE-EQUAM process is software artifacts and a set of core quality
measurements applicable to these artifacts. In the next step, a common ontological representa-
tion for these artifacts has been established by reusing existing models or customizing existing

@ Springer

Software Quality Journal

Syntactic Quality Metamodel Semantic Ontology Metamodel

— ity " ity sbutes| Qualty

Semantic Mapping [rE——

Iy Di ity i P s

Project Qﬂ":nsion 1<F::lnr = SubFactor Autribute 'ime:um Project +—— Dimen
. T . 8

Syntactic OntEQAM Model

é:al;x:bgl[:liy —
angeabilfty ——————»
T e

Testabilty

2. ity Stabilty

« Testability
Product Doc ocu T —
Compliance to Standards ~ <—

N \
cuments Quality ~—e———— Product Documents Qu:
B,
Project Evolvability PRI 1O Stancards Project Evolvability
/« .| \/ Slilope communty e

communyy /" \ Develoner commnty ety <—31 Community Beveloper community sty o
Activity Developer community heterogenitys) Activity Developer community heterogenity<—»
A Developer turnover <———— » o, Developer turnover = <+————»

Analyzability *——————
Changeabilty <————
stability +———————>

Measure
Measure

Asserted —b < -~

Inferred e e e [P

hasOimension hasfactor hasSubfactor hasAtirbute hasMeasure

Fig. 3 SE-EQUAM ontology meta-model reuse to instantiate a domain model ontology (OntEQAM) (Hmood
et al. 2012)

models to meet the requirements of these artifacts. As part of the model adjustment activity,
quality metrics and measurements included in the core model can be customized and extended
to reflect a specific model context. The output of this process is an instantiated assessment
model, which meets specific user and project assessment requirements, by providing a quality
assessment at both individual artifact and overall product level. Figure 4 illustrates the high-
level activities and major tasks involved in the SE-EQUAM instantiation method.

In the next section, we introduce OntTAM, which illustrates a concrete instantiation of the
SE-EQUAM process to create a semantically enriched trustworthiness quality assessment
model for software libraries.

4 Ontology-based trustworthiness assessment model (OntTAM)

OntTAM, an instantiation of the SE-EQUAM (Hmood et al. 2012) ontology meta-model,
illustrates how our modeling approach can take advantage of the unified ontological representa-
tion of both software artifacts and the generic SE-EQUAM quality assessment model. OntTAM
instantiates a domain-specific quality model to assess the trustworthiness of software projects
and, more specifically, the trustworthiness of external libraries. OntTAM reuses SE-EQUAM’s

~
(1 (2 f 3 (4
Artifact Selection Modeling Model Adjustment Assessment
Define project Reuse/customize Select/create ontological Artifact specific
ontological models queries for semantic assessment

analysis

Identify artifiacts
information Assessment across
Provide extraction Enrich the knowledge Adjust model and artifact boundaries
mechanisms base with new rules, weights to reflect these
Identify trustworthy contraints and concepts metrics and Assessmlent Tt system
@ measurements \ (if applicalbe) \ measurements \ eve

Fig. 4 SE-EQUAM process to instantiate evolvability model

@ Springer

Software Quality Journal

General
Concepts

N AN
Concepts Relat:lons & \
Attributes \

" Domain Spanning Concepts o
Measurements

SE-EQUAM | SV-AF
OntTAM Model

Domain Specific Concepts

Security Software Build N
/ Vulnerabilities Engineering Systems \
System Specific Concepts
Exploits | Source| Issue License .
NVD| OSsvDB DB Codes |Tracking| Information History | Maven | Ant vy N

Fig. 5 The software security and trustworthy ontology hierarchy

core quality model structure which is based on quality factors, sub-factors, attributes, measures,
weights, and relationships and extends them with trustworthiness-specific aspects. Inputs to
OntTAM are knowledge resources such as version control systems, build systems, project license
information, and security vulnerability information. The output of OntTAM is a trustworthiness
assessment score for either an individual metric or an aggregation of sub-factors and factors for
the overall product/library quality. The model thereby takes advantage of the OWL’ and RDF/
RDFS'® semantic reasoning capabilities to infer hidden relationships between domain model
attributes and to ensure the consistency among these attributes.

Figure 5 provides an overview of the knowledge model framework and its organization in
terms of ontologies and their abstraction levels. While these ontologies may be derived
modeled and used independently, a key objective of our approach is the knowledge integration
across ontology boundaries, using both ontology alignments and semantic linking to create a
unified ontological knowledge representation.

In what follows, we present our OntTAM methodology to further demonstrate how we
instantiate different trustworthiness sub-factors (i.e., security, reliability, and legality), to
establish a trustworthiness assessment for OSS products (e.g., external libraries). More
specifically, we discuss in detail the four major steps involved in instantiating our customized
OntTAM trustworthiness assessment model (Fig. 4): artifact selection, modeling, model
adjustment, and the assessment process.

4.1 Artifact selection

The inputs to OntTAM are artifacts relevant to the reuse of software libraries within
projects. These software artifacts can be categorized into endogenous and exogenous data.

? https://www.w3.0rg/OWL/
1 https://www.w3.org/TR/rdf-schema/

@ Springer

http://www.w3.org/OWL/
http://www.w3.org/TR/rdf-schema/

Software Quality Journal

Endogenous data represents data available internally to a software development environ-
ment (e.g., software artifacts related to versioning systems, issue trackers, software
licenses, and build systems). Exogenous data refers in our context to data available
externally to the software development environment (e.g., external vulnerabilities data-
bases). Extracting and populating facts from these artifacts are often based on techniques
commonly used by the MSR community (Kagdi et al. 2006; Kagdi et al. 2007; Kamiya
et al. 2002). It should be noted that unstructured or semi-structured information (e.g.,
vulnerability descriptions and license information) often requires several preprocessing
steps such as natural language analysis (NLP), as well as data cleansing to improve the
quality of the data prior to the ontology population. More details about our data
preprocessing and ontology population process can be found in Algahtani et al. (2016)
and Alqahtani et al. (2017).

4.2 Model and model adjustment

In this section, we discuss our knowledge modeling process in detail. It should be noted that in
order to improve readability, we will be using the following prefixes as substitutes to the fully
qualified names of our ontologies:

e rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

e owl: <http://www.w3.0rg/2002/07/owl#>

* seon: <http:/se-on.org/ontologies/general/2012/02/main.owl#>

* sevont: <http://aseg.cs.concordia.ca/segps/ontologies/domain-spanning/2015/02
/vulnerabilities.owl#>

* sequam: <http://aseg.cs.concordia.ca/segps/ontologies/domain-spanning/2017/09/sequam.
owl>

* onttam: <http://aseg.cs.concordia.ca/segps/ontologies/domain-spanning/2017/09/onttam.
owl#>

* sbson: <http://aseg.cs.concordia.ca/segps/ontologies/domain-specific/2015/02/build.
owl#>

* code: <http://aseg.cs.concordia.ca/segps/ontologies/domain-specific/2015/02/code.
owl#>

* oswaldo: <http://aseg.cs.concordia.ca/segps/ontologies/domain-specific/2017/09/license.
owl#>

4.2.1 Modeling project trustworthiness

Since OntTAM is based on the generic SE-EQUAM model, OntTAM is an extension and
specialization of our core SE-EQUAM software quality assessment model. OntTAM is
extended to provide a syntactical trustworthiness quality model that includes and defines
a set of sub-factors, attributes, and metrics required for the assessment of trustworthiness.
Many of these trustworthiness factors, attributes, and metrics are derived from existing
work on trustworthiness assessment of open and closed source projects (Hmood et al.
2012; Hmood et al. 2010). The OntTAM-specific trustworthiness assessment is based on
the two general quality dimensions, the community and product dimensions. The com-
munity dimension assesses the adoption of a software product by the community over an

@ Springer

http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://www.w3.org/2002/07/owl%23
http://se-on.org/ontologies/general/2012/02/main.owl#%3E
http://aseg.cs.concordia.ca/segps/ontologies/domain-spanning/2015/02/vulnerabilities.owl#%3E
http://aseg.cs.concordia.ca/segps/ontologies/domain-spanning/2015/02/vulnerabilities.owl#%3E
http://aseg.cs.concordia.ca/segps/ontologies/domain-spanning/2017/09/sequam.owl#%3E
http://aseg.cs.concordia.ca/segps/ontologies/domain-spanning/2017/09/sequam.owl#%3E
http://aseg.cs.concordia.ca/segps/ontologies/domain-spanning/2017/09/onttam.owl#%3E
http://aseg.cs.concordia.ca/segps/ontologies/domain-spanning/2017/09/onttam.owl#%3E
http://aseg.cs.concordia.ca/segps/ontologies/domain-specific/2015/02/build.owl#%3E
http://aseg.cs.concordia.ca/segps/ontologies/domain-specific/2015/02/build.owl#%3E
http://aseg.cs.concordia.ca/segps/ontologies/domain-specific/2015/02/code.owl#%3E
http://aseg.cs.concordia.ca/segps/ontologies/domain-specific/2015/02/code.owl#%3E
http://aseg.cs.concordia.ca/segps/ontologies/domain-specific/2017/09/license.owl#%3E
http://aseg.cs.concordia.ca/segps/ontologies/domain-specific/2017/09/license.owl#%3E

Software Quality Journal

Syntactic SE-EQUAM Model Semantic Semantic SE-EQUAM Model
Mapping
; - ER

Instantiate

Syntactic OntTAM Model

Fig. 6 Reuse of the SE-QUAM meta-model to instantiate the OntTAM domain model ontology

extended period of time, by considering the popularity in terms of downloads, rankings,
and activity of the development community. The product dimension assesses the internal
structure of the product and the development processes that impact its reusability which
is the focus of this paper.

Figure 6 above provides an overview of the complete model instantiation process which
provides as its output a formal (machine-readable) and semantic-enriched trustworthiness
assessment model. The process involves applying both a syntactic and semantic mapping
from SE-EQUAM to OntTAM. While the syntactical model allows us to answer basic queries
such as: What are the sub-factors associated with product trustworthiness?, the semantic
mapping enables the use of DL axioms (such as the property chain axiom) to infer new implicit
relationships (dashed lines in Fig. 6 — semantic OntTAM ontology) from explicitly modeled
relationships in OntTAM (solid lines in Fig. 6).

Figure 7 illustrates the main steps which are applied to associated trustworthiness concepts
and measures for a sample project (ProjectX):

Metamodel w J/ ... etc
QU repe :
(SE-EQUAM) :

hasScore hasFactor

sl
hasScore

rdf:type DependencyCount, OntTAM domain

Ontology

hasMeasure

Fig. 7 An example defining the associated trustworthiness concepts and measures for a sample project

@ Springer

Software Quality Journal

1. Define the product and community dimensions.

<onttam:ProductDimension><rdfs:type><sequam:Dimension> and
<onttam:CommunityDimension><rdfs:type><sequam:Dimension>.

2. Define reusability as a factor that is associated with the product dimension.

<onttam:ProductDimension><sequam:hasFactor><onttam:Reusability> and
<onttam:Reusability><rdfs:type><sequam:Factor>.

3. Following the same approach, OntTAM defines reliability as a sub-factor of reusability
which is associated with the popularity attribute.

<onttam:Reusability><sequam:hasSubfactor><onttam:Reliability>,
<onttam:Reliability><rdfs:type><sequam:Subfacor>,
<onttam:Reliability><sequam:hasAttribute><onttam:Popularity> and
<onttam:Popularity><rdfs:type><sequam:Attribute>.

4. Assuming that OntTAM assesses a product’s reusability through the popularity
trustworthy attribute using the DependencyCount measure, we can now define
this as:

<onttam:Popularity><seon:hasMeasure><sbson:DependencyCount>and
<sbson:DependencyCount><rdfs:type><seon:Measure>.

Finally, we enrich OntTAM’s syntactical model to become a semantic model, by establish-
ing additional semantic relationships by adding property chain axioms (e.g., hasDimension
relationship with hasSubfactor and hasMeasure). The following are examples of OWL 2
property chain axioms which we added to be able to take advantage of RDFS reasoning
during the assessment process.

* Project-related OWL 2 property chain constructs:

SubPropertyOf(ObjectPropertyChain(:Project :hasFactor) :Factor)
SubPropertyOf(ObjectPropertyChain(:Project :hasSubfactor) :Subfactor)
SubPropertyOf(ObjectPropertyChain(:Project :hasAttribute) :Attribute)
SubPropertyOf(ObjectPropertyChain(:Project :hasMeasure) :Measure)

* Dimension-related OWL 2 property chain constructs:
SubPropertyOf(ObjectPropertyChain(:Dimension :hasSubfactor) :Subfactor)

SubPropertyOf(ObjectPropertyChain(:Dimension :hasAttribute) :Attribute)
SubPropertyOf(ObjectPropertyChain(:Dimension :hasMeasure) :Measure)

* Factor-related OWL 2 property chain constructs:

SubPropertyOf(ObjectPropertyChain(:Factor :hasAttribute) :Attribute)
SubPropertyOf(ObjectPropertyChain(:Factor :hasMeasure) :Measure)

* Subfactor-related OWL 2 property chain constructs:

SubPropertyOf(ObjectPropertyChain(:Subfactor :hasMeasure) :Measure)

@ Springer

Software Quality Journal

4.2.2 Integration with other knowledge artifacts

Assessing the overall trustworthiness of a software library requires us not only to instantiate
OntTAM but also to integrate it with other ontological software knowledge artifacts to be able
to derive and integrate novel trustworthiness measures. For the integration, we take advantage
of software artifact ontologies we have created and refined over the years (Algahtani et al.
2017; Zhang et al. 2008; Keivanloo et al. 2011) and by reusing existing ontologies (Wiirsch
et al. 2012) that model different software artifacts. Figure 8 provides an overview of the unified
ontological representation of software artifacts which we integrate with OntTAM. These
artifacts include, but are not limited to, (a) Software Evolution Ontologies (SEON) which
model software engineering repositories such as source code, version control systems, issue
tracker systems, and licenses; (b) the Build Systems ONtology (SBSON) which captures
knowledge about build management systems (e.g., Maven); and (c) the Software sEcurity
Vulnerability Ontologies (SEVONT) for modeling software security vulnerability information
such as severities, impacts, vulnerabilities types, and patch information found in different
security databases.

The integration of these heterogeneous knowledge resources allows us to introduce differ-
ent trustworthiness measures related to the reuse of software libraries. More specifically, in this
research, we introduce the following three trust criteria: API breaking changes, security
vulnerabilities, and license violations. Figure 8 shows the core concepts and object properties,
distributed across the different abstraction layers of our knowledge modeling framework (Fig. 5).
It should be noted the omitted data properties to improve the readability of the figure.

Among the core concepts used from these ontologies is the BuildRelease from the

SBSON build ontology, which is a subclass of the Release concept which allows captures
the fact that a project can have several releases (including library releases). A Release has a

License and defines its dependencies on other releases. Each release contains a set of

CodeEntity elements such as Field Method and Class, A release can be affected

Metamodel w etcf

Ontology /"\ rdf:t/Ype - -

(QUAMON) hasScore hasFactor /'/
hasScore

hasScorerdf type
m 4 hasSubfactor
hasScore rd/f/;type Reliability
hasAttribute

hasSubFactor
hasScore hasAttribute

df t
e L Popularity

hasMeasure hasMeasure

; hasScore
... etc m ~rdf:type DependencyCount OntTAM domain

Ontology

Fig. 8 Integrating OntTAM ontology into SV-AF model and reusing SE-QUAM concepts

hasDimension :

@ Springer

Software Quality Journal

by a Vulnerability leading to the release of a new version containing a
SecurityPatch, A security patch corresponds to code changes introduced to fix some

existing VulnerableCode, which is part of a CodeEntity, For example, if a class or

method is modified during a security patch, then this code change can be used to locate the
original VulnerableCode, The OWL classes, SecurityPatch and

VulnerableCode, gare linked in our model through an object property. For a complete

description of the ontologies, how they are built, the alignment processes, and reasoning, we
refer the reader to Alqahtani et al. (2016) and Algahtani et al. (2017).

All of these core concepts have metrics used by the OntTAM assessment process.
Measures have a unit and are expressed on a scale, e.g., an ordinal or nominal scale.
Information about units and scales can be used to perform conversions (Wiirsch et al.
2012). Many base measures, such as the number of lines of vulnerable code (LOVC),
number of known vulnerabilities, vulnerabilities severities (scores), and number of
license violations provide, when viewed in isolation, only limited insights. Additional
derived measures are needed to support further analysis and assessment of software
artifacts. These derived measures represent an aggregation of values from different
subdomains, for example, the number of vulnerabilities per class is an aggregation of
measures derived from source code and the vulnerability repositories. While the
abstract measurement concepts are defined in the general upper layer of our integrated
model (Fig. 8), many base measures (e.g., size) and derived measures (e.g., weighted
vulnerability density) are modeled in the domain-specific layer.

4.3 Measures and metrics

An essential feature of our modeling approach is to allow users to customize the
OntTAM model through user-defined queries, which might introduce different metrics,
ranging from simple metrics to semantic-rich metrics queries that take advantage of
implicit knowledge inferred by ontological reasoners. Given our ontology-based modeling
approach, these analysis results can also be materialized to enrich our knowledge base
and to promote reuse of existing analysis results. In what follows, we introduce some
metrics to be later used for the assessment of the trustworthiness of systems. These
metrics take not only advantage of our unified representation, but also inference services
provided by the Semantic Web.

Weighted vulnerability density (WVD) metric compares software systems (or their
components) based on severity scores of known vulnerabilities. The objective of
WVD is to measure the impact of known vulnerabilities on a product’s quality, with
the most severe vulnerabilities having the greatest impact. The metric can be applied,
for example, to prioritize the patching of vulnerabilities based on their severity. To
account for both direct and indirect impacts of vulnerabilities, we introduce the
WVDyireet and WVDjherie measures. Although a project can have a WVDy;..; score
of 0 since no known security vulnerability has been reported for the core project, it is
still possible that the project is exposed to indirect vulnerability found in external
(third party) dependencies (components) that are included in the parent project. Such a
potential security risk will be assessed by the WVDjuei measure.

@ Springer

Software Quality Journal

i incompatiblewith
incompatiblewith companblerth compatlbIeWrth Q P
uses uses uses uses |
uses
— tibl with Wi
—incompatibleWith™ compatibleWi < compatibleWith

(a) Type 1 —Simple Violations (a) Type 2 - Transitive Violations (a) Type 3 — Compound Violations

Fig. 9 Categories of license violations

Wi

HM<

WVDyjrect (release) = S (1)
where S is the size of the software (in KLOC), w; is the weight (severity score) of a known

vulnerability affecting the system, and V is the number of known vulnerabilities in the system.

vulnerable APIs in d; used by release
total vulnerable APIs in d;

WVDinherit (release) = Y7, { () *WVDd;rem(d,»)} (2)

where 7 is the number of dependencies used by release and d; is the ith dependency.
WVDgyerii (release) = WVDgieet (release) + WV Djpnerit (release) (3)

License violation count (LVC) is a measure to assess the number of license violations that
exist within a given project. This measure can indicate potential long-term risks associ-
ated with intellectual rights violations that exist within a project. A license violation
occurs if any of the dependent components of a parent project includes components with
non-compatible licenses. Open source code license violations are often due to the fact
that many software developers are simply neither aware nor well-versed in open source
license compliance. For example, in 2008, the Free Software Foundation (FSF) claimed
that various products sold by Cisco under the Linksys brand had violated the licensing
terms of many programs on which FSF held the copyright.'' These FSF programs were
under the GNU General Public License, a copyleft license which allows users to modify
a piece of software as long as the derivative work is under the same license.

In this work, we identify three (3) main categories of license violations: simple violations,
transitive violations, and compound violations (see Fig. 9). LVCgjnpies LV Ciransitive- and
LVCompouna are base measures associated with each category. Details on how license viola-
tions are identified are presented in Section 5.3.

LVCgyerani(release) = LVCgimple (release) + LV Ciansitive (release) + LVCeompound ~ (4)

Breaking change density (BCD) metric is a normalized measure which represents the
ratio between breaking and non-breaking API changes that are introduced in a project.
API changes often occur as a project and its components evolve inconsistently,
resulting in incompatibilities of APIs and API calls. This measure can be used to
determine the stability of an API over time—how often do breaking changes occur.

' https://en.wikipedia.org/wiki/Free_Software_Foundation, Inc. v. Cisco_Systems, Inc.

@ Springer

https://en.wikipedia.org/wiki/Free_Software_Foundation,_Inc._v._Cisco_Systems,_Inc.

Software Quality Journal

Details on how we identify breaking changes are presented in Section 5.4. The BCD
metric can be represented formally as follows:

#breaking API changes (s)
#nonbreaking API Changes

Breaking change impact (BCI) measures the impact of breaking changes on client applications,
by assessing a client application and its use of APIs with a changed contract. The impact of
breaking changes on clients can be both direct and indirect. While there exists a significant
body of work on the direct impact of changes (Raemaekers et al. 2012; Raemacekers et al.
2014; Robbes et al. 2012; Cossette and Walker 2012; Kapur et al. 2010), very little research
has been conducted on indirect breaking changes. Indirect breaking changes occur, for
example, when different versions of the same API are introduced by any of the client’s other
dependencies. By default, the Java virtual machine is unable to differentiate between multiple
versions of the same APIL. In cases where multiple versions of a dependency are encountered,
the first occurrence of an API version in a project’s classpath is chosen. We introduce two
measures that capture both direct and indirect breaking changes.
We represent the BCI metrics formally as follows:

_ #tbreaking API changes in D used by C

BCD =

BClgiret(C, D) = . . 6
aieer() #breaking API changes in D (6)
BCIindirect(C7 < D17 ceey Dn >)
__ ##breaking API changes in < Dy, ..., D, > used by C 7)
h #breaking API Changes across < Dy, ..., D, >

where C is the client project, D is the reused library, and <Dy, ..., D,> is the set of (direct and
transitive) different library releases being reused by the client.

4.4 Assessment process

Given that assessment needs differ among stakeholders and assessment contexts, our OntTAM
assessment process allows for the customization of trustworthiness assessment model in terms of
sub-factors and attributes being assessed as well as the individual weights assigned to them. While
the default weight for all sub-factors and attributes are equal, users can customize these weights to
match more closely their assessment objective and context. Furthermore, while most existing
assessment approaches rely on crisp boundaries (e.g., based on thresholds), this approach can lead
to inaccuracy in the assessment process. It is not always feasible or desirable to use crisp values
especially when one deals with values which are close to crisp value boundaries. For example, let us
assume a project X with a reported number of five known vulnerabilities, a binary scale for
trustworthiness which is trustworthy or non-trustworthy, and a crisp value threshold of four known
vulnerabilities. Based on this crisp boundary, the project will be assessed as being non-trustworthy,
even if it can be considered almost borderline to being considered trustworthy. To further exemplify
the problem, using the crisp boundary values, there would actually not be any difference between
project X with five known vulnerabilities and project Y with 100 vulnerabilities, and both projects
would be considered equally non-trustworthy. Furthermore, the problem can not only occur at the
individual measurement level but also occur at other assessment levels (e.g., sub-factor, factor). To
address this challenge, we apply a fuzzy logic assessment and inference approach to eliminate the
need for crisp value boundaries.

@ Springer

Software Quality Journal

Figure 10 shows the set of transformation steps, which are performed during the
fuzzification of the assessment process, with details of each step discussed in more details
throughout the section.

1) Measure calculation: Input to this step are raw values from the populated ontologies.
Measures are calculated by querying our populated knowledge base for the base and
derived measures introduced in the previous section (e.g., WVD).

2) Fuzzification: The extracted quality measures and weight values are used to create fuzzy
scales in the fuzzification step. As part of the fuzzification step, fuzzy scales are created
for the different measures, the assessment weights (provided by stakeholders of the
assessment model to assign a level of importance to different measures), and the overall
assessment result. These results are converted to linguistic variables, which are variables
whose values are expressed as words or sentences (values like high, not very high, low)
(Zadeh 1975). These linguistic variables are the building blocks of fuzzy logic and
become the input for the fuzzification inference engine.

Figure 11 shows an example of a fuzzy scale created for the WVD measure and its
assessment weights. The x-axis represents the measurement results’ range and the y-axis the
membership degree (range is 0-—1). The higher the membership value, the stronger the
measurement’s relation to its fuzzy result scales. The overlap between boundaries of categories
in the fuzzy scale demonstrates the uncertainty in interpreting boundary measurement results.

Since high WVD, LVC, and BCD measures lower the overall quality and trustworthiness score
of a project, we made the following three assumptions to automate the fuzzy inference rules for
these measures: (1) in cases when the user-specified weight is high then the individual measure

Knowledge Base 888

"Crisp input Crisp output

Knowledge
Enrmhment#

A

Measurement
Calculation

Non-fuzzy
values

Weighted Score

Assessment
(Inferencing)

Weight & Measure
fuzzy scales

Un-weighted
Measure
Scores

Fire

Inference

Rules

Fig. 10 Fuzzy assessment process steps

@ Springer

Software Quality Journal

WVD_Measure

1.00 I
0 1 2 3 4 S 6 7 8 9 10 11

X

Membership
o o
n ~J
o (9}

o
)
wm

o
o
(=)

|& VERYHIGH & HIGH & LOW & AVERAGE ~ VERYLOW |

WVD_Weight

1.00
0.25
0.00
0 1 2 3 4 S 6 7 8 9 100 11 12

X

o
~
wn

Membership
o
(9)]
o

A HIGH & MEDIUM & LOW

Fig. 11 WVD measure fuzzy scale and weight fuzzy scale for WVD measure

score is one level lower, VeryPoor scores will keep their values (e.g., a high weight will change an
Excellent score to VeryGood); (2) the opposite holds for low weights, which reflects that their
scores are less relevant to the overall assessment their scores are adjusted by one level higher.
Excellent scores keep their values; (3) with medium weight, scores keep their values. These
assumptions reflect the fact that when a measure is of high importance to the assessment (high
weight), its score should be more sensitive to a low measure value.

@ Springer

Software Quality Journal

Mmaven 130,895 projects
1,219,731 releases
= ©git foeoen .
roject Code + Version Detection of breaking . . Triples
. G ting tripl
— | history changes with Clirr enerating triples populated

74,945 unique CVEs
109,212 vulnerable
projects

Triple store
with
reasoning

Ontology alignment

Fig. 12 Overview of case study setup process

3) Inference and assessment: Input for this step is the fuzzified measure and weight values in the
form of linguistic variables. These linguistic results are now transformed into the final
assessment score by executing a set of fuzzy inference rules. The de-fuzzification is based
on a set of fuzzy inference rules, which are expressed in the Fuzzy Control Language (FCL) (1.
E. Commission 2000) using the JFuzzyLogic inferencing engine (Cingolani and Alcala-Fdez
2012). The inference engine fires the relevant fuzzy rules based on the provided input. Firing
rules will calculate the final weighted overall measurement result which is a combination of all
the different measures. Using the center of gravity (COG) method, considered as one of the
most popular de-fuzzification methods (Samoladas et al. 2008), the overall fuzzy measure-
ment result is de-fuzzified back into a numerical assessment measurement results in order to
be populated back to the knowledge base. As part of our assessment, we create a FCL file for
each measure. The complete set of FCL files for all measures can be found online.'?

4) Knowledge enrichment:. This optional step allows for the integration of the assessment
results at both the individual attribute, sub-factor, and overall assessment level. Our
ontological representation enables us to seamlessly integrate these assessment results in
the knowledge base, therefore not only supporting reuse of analysis results but also
allowing their use for further semantic analysis.

5 Case study

The objective of this section is to demonstrate the applicability of our modeling approach to
support the assessment of trust within OSS software libraries, by highlighting the flexibility of our
modeling approach, in terms of its seamless knowledge and analysis results integration, as well as
the use of Semantic Web reasoning services to infer new knowledge (measures). In Section 5.1,
we present the setup for our study, including the selection process for the four projects used to
illustrate our approach; Sections 5.2 to 5.4 describe how we identify and measure security
vulnerabilities, license violations, and API breaking changes. Section 5.5 describes how these
individual identified measures can be integrated for a holistic trustworthiness assessment.

5.1 Study setup

For the data collection and extraction in our case study (see Fig. 12), we rely on four data
sources: the NVD database, GitHub, SVN, and the Maven build repository.

For our study, we have downloaded the latest versions of the Maven and NVD
repositories—which include 1,219,731 project releases in Maven and 74,945 vulnerabilities

12 https://github.com/segps/segps-code

@ Springer

https://github.com/segps/segps-code

Software Quality Journal

Table 4 Overview of selected case study projects

Project No. of releases analyzed No. of dependencies
Commons Fileupload 6 68,854
Apache CXF WS Security 5 4570
Struts 3 3170
ASM 20 8109

Release (?r), hasLOC(?r, ?loc), hasOverallSeverityScore(?r, ?score),
divide (?wvdDirect, ?score, ?loc) — hasDirectWVD(?r, ?wvdDirect)

Fig. 13 The rules to infer the direct WVD measure

affecting 109,212 releases in NVD. For our study, we limited the assessment scope to four
projects. The projects were selected based on the following criteria: (a) at least some of their
releases contained known vulnerabilities, (b) license details were provided, (c) releases varied
in their major version numbers, and (d) the functionalities these products provide are widely
reused by other projects (see Table 4 for details). The four subject systems vary in size (classes
and methods) and application domain. Commons Fileupload'? adds file upload capabilities to
web applications, and CXF WS Security'® provides reusable components for client-side
authentication, security, and encryption. Struts'> is an open source framework for creating
Java web applications, and ASM'® is a Java bytecode manipulation library. We further extract
the complete source code and history information of these four projects. The extracts facts
were used to populate the corresponding ontologies and made persistent in our triplestore.

5.2 Identifying and measuring software security vulnerabilities

Approach In what follows, we show some of the main rules and queries used to derive the
WYVD measures (overall, direct, and inherited). These rules are of interest, since they highlight
the flexibility and power of our modeling approach, allowing users to define and customize
their own derived measures without the need for any additional proprietary algorithms
implementations or modeling.

WVDyjet inference In order to derive the WV Dy score for the projects, we define rules
using the Semantic Web Rule Language (SWRL), similar to the one shown in Fig. 13. The rule
states that, if some project release has a LOC and OverallSeverityScore measure, then the
release has a WV Dy score (obtained by dividing the overall severity score by LOC).

WVDjherit inference For us to be able to infer the WVDjerie measure of a project release, we
had first to determine the ratio of vulnerable APIs that are reused in a particular release. The
OntTAM knowledge model not only captures the required information to derive this measure,
but also includes all semantics to be able to take advantage of the Semantic Web reasoners to

'3 https://commons.apache.org/proper/commons-fileupload/
' http://cxf.apache.org/docs/ws-security.html

'3 https://struts.apache.org/

16 http://asm.ow2.org/

@ Springer

https://commons.apache.org/proper/commons-fileupload/
http://cxf.apache.org/docs/ws-security.html
https://struts.apache.org
http://asm.ow2.org/

Software Quality Journal

CONSTRUCT{?release ?totalVulnerableCodeCount}
WHERE {
{
SELECT ?release count(?vulnerableCode) as ?totalVulnerableCodeCount
WHERE {
?vulnerableCode .
?release ?vulnerableCode
}GROUP BY ?release
b}

Fig. 14 SPARQL query for inferring the total number of vulnerable code entities in a project

CONSTRUCT{?1link ?usedVulnerableCodeCount}
WHERE {
{

SELECT ?link count (?vulnerableCode) as ?usedVulnerableCodeCount

WHERE {
#?1link represents the ?client dependency on ?release
?link a .

?link ?client.
?link ?release.
?client ?codeEntity.
?codeEntity ?vulnerableCode.

{
SELECT ?vulnerableCode
WHERE {
?vulnerableCode .
?release ?vulnerableCode.
}
}
}GROUP BY ?1link
1}

Fig. 15 The SPARQL query for inferring the vulnerable code entities used by different dependent projects

infer the measure value. More specifically, once the required ontologies (e.g., SEVONT,
SEON, OntTAM) are populated, a SPARQL query can be created to retrieve the number of
vulnerable API elements in a given release (see Fig. 14).

Using Fig. 15, we can also determine the number of such vulnerable API elements being
reused in client applications. For a more detailed description, on how we detect vulnerable
code elements, the reader is referred to our previous work (Algahtani et al. 2017).

The SPARQL query (Fig. 16) exemplifies how we take advantage of analysis results from
the inference rules in Fig. 15 to infer the final WVDjpq.ic measure for a particular release of a
component.

CONSTRUCT{?client ?inheritWvD }
WHERE {
{
SELECT ?client count (?indirectWVD) as ?inheritWVD
WHERE {
?link a .
?link ?client.
?link ?release.
?client ?usedVulnerableCodeCount.
?release ?totalVulnerableCodeCount.
?release ?directWvD.
BIND ((?usedVulnerableCodeCount/?totalVulnerableCodeCount) AS ?vulnerableCodeRatio) .
BIND((?vulnerableCodeRatio * ?directWVD) AS ?indirectWVD) .
}

+}

Fig. 16 SPARQL query for inferring inherited WVD measures in clients’ projects

@ Springer

Software Quality Journal

Table 5 Vulnerability densities of selected projects

Project No. of vulnerabilities Aggregated vulnerability scores Size (KLOC) WVD
commons-fileupload 1.0 2 10.8 1.23 8.78
commons-fileupload 1.1 2 10.8 1.28 8.46
commons-fileupload 1.2 2 10.8 1.78 6.05
commons-fileupload 1.2.1 2 10.8 1.97 5.49
commons-fileupload 1.2.2 2 10.8 2.04 5.31
commons-fileupload 1.3 1 7.5 2.39 3.14
Apache CXF WS Security 2.4.1 4 23.6 18.92 1.25
Apache CXF WS Security 244 4 23.6 21.30 1.11
Apache CXF WS Security 2.4.6 5 27.9 23.10 121
Apache CXF WS Security 2.6.3 8 39.4 26.43 1.49
Apache CXF WS Security 2.7.0 10 494 26.43 1.87
Struts 1.2.4 5 30 24.04 1.25
Struts 1.2.8 8 49.6 24.61 2.02
Struts 1.2.9 4 25.7 24.76 1.04

Findings and discussion Table 5 provides the analysis results for our case study in terms of
known vulnerabilities, size, and WVD scores for selected project releases. Using the WVD
measure, we can now compare two releases of the same project in terms of their weighted
vulnerability density. For example, based on the WVD measure, we can consider Struts 1.2.9
to be more trustworthy than earlier versions of Struts (e.g., versions 1.2.4 and 1.2.8, which
have both higher WVD scores). However, the latest version is not always better than earlier
versions as seen with the analyzed Apache CXF WS Security libraries. Version 2.7.0 of the
CXF WS Security library has a worse WVD compared to its previous versions—two new
vulnerabilities were introduced in version 2.7.0 in addition to the existing vulnerabilities
inherited from prior versions.

Table 6 Clients who switched from a vulnerable API in later release. n/a not available

Project Vulnerability % clients % clients switched to less % clients switched
switched versions vulnerable release (WVD) to a release with
of the library equal or higher

WVD score
commons-fileupload 1.0 CVE-2014-0050 2936 74.26 25.74
commons-fileupload 1.1 6.28 58.33 41.67
commons-fileupload 1.2 70.54 100.00 0.00
commons-fileupload 1.2.1 3897 97.55 2.45
commons-fileupload 1.2.2 46.79 99.99 0.01
commons-fileupload 1.3 40.62 0.00 100.00
Apache CXF WS CVE-2013-0239 94.93 100.00 0.00
Security 2.4.1

Apache CXF WS 95.00 0.23 99.77
Security 2.4.4

Apache CXF WS 95.24 63.10 36.90
Security 2.4.6

Apache CXF WS 98.08 85.29 14.71
Security 2.6.3

Apache CXF WS 92.75 97.26 2.74
Security 2.7.0

Struts 1.2.4 CVE-2016-1181 0.00 n/a n/a

Struts 1.2.8 4444 100.00 0.00

Struts 1.2.9 0.00 n/a n/a

@ Springer

Software Quality Journal

SELECT distinct *
WHERE {
?link a .
?link ?project2.
?link ?projectl.
?projectl ?licensel.
?project2 ?license?2.
?licensel ?license2.
}

Fig. 17 SPARQL query for inferring the total number of breaking changes in a project

SELECT distinct *
WHERE {
?linkA a .
?1linkA ?project2.
?1inkA ?projectl.
?1inkB a .
?1inkB ?project3.
?1inkB ?project2.
?projectl ?licensel.
?project2 ?license?2.
?project3 ?license3.
?licensel ?license2.
?license2 ?license3.
?licensel ?license3.
}

Fig. 18 SPARQL query for inferring the total number of breaking changes in a project

We further analyzed the WVD results, to see whether developers actually migrate their
applications to library versions which are less vulnerable (e.g., a newer version of the same
library with patched vulnerabilities). Table 6 provides an overview of the number of dependent
applications which change their build dependency to a more trustworthy release (based on the
lower WVD score). Our analysis results show 45.1% client applications which switched their
library dependencies; out of these, 63.29% switched to a more trustworthy library release.
Surprisingly, the remaining 36.71% switched to library releases which are either equal or less
trustworthy (higher WVD score), even if more trustworthy library versions are available.

Trustworthiness Measures

(- # Vulnerabilities
- aggregated Severity scores
WVDdirect
CWVDinherit

- WvDoverall

- # License Violations
- LvD

- direct BCI
indirect BC|
(BCD

- # breaking changes

- # nonbreaking changes

switched dependencies

S~ T _ # dependencies

Project halemens\cns-» ~ Product

~< - Community

Trustworthiness
/
Trustworthiness Trustworthi Sub-factors
ieheon Mractors E“"’"a"‘y
Factors Iman

-Defined Relation——— =~
— — — =Inferred Relation— — —»

Fig. 19 SPARQL query for inferring the total number of breaking changes in a project

@ Springer

Software Quality Journal

3% 1% 1% 1%

\\

o)

4% = Apache-2.0

5%

= LGPL-2.1

= EPL-1.0
AGPL-3.0

= MIT

= GPL-3.0

= LGPL-3.0

= BSD-3-Clause

Fig. 20 License distribution in the Maven repository
5.3 Identifying and measuring license violations

Approach License violations originating from external libraries and components can cause a
major long-term liability for client applications in terms of intellectual property and the trustwor-
thiness of these libraries. In our study, we first evaluate if such license violations (non-
compliances) occur in general in project dependencies managed by the Maven repository. In
the second part of our study, we revisit our four projects used in our trustworthiness assessment
study, to assess their trustworthiness in terms of license violations. For the study, we create
SPARQL queries that analyze all dependency relationships in Maven and identify three (3) main
categories of license violations: simple violations, transitive violations, and compound violations
(see Section 4.3). The queries take advantage of both our open source license ontology and the
build ontology. Figures 17, 18, and 19 illustrate the queries we used to identify these violations.

Findings and discussion This section presents and discusses the results obtained in our
license violation experiment for the Maven repository. Figure 20 shows the distribution of
common project licenses in the Maven repository, with Table 7 reporting on the license
violations, classified by the type of violation, which we observed in our study of the Maven
repository.

Our study identified over 131,000 simple violations and numerous transitive license
violations of various types. We note that Type 3 is seemingly the most popular type of
violation, followed by Type 2, then 1. In what follows, we report on some of license violations
or incompatibilities which we observed in our study.

Table 7 Totals for each type of violation found by querying the data store

License violation types Count

Type 1—simple violations 131,996
Type 2—embedded violations 288,153
Type 3—compound violations 654,964

@ Springer

Software Quality Journal

Apache 2 » GPL 2 s 65105
GPL 3 » Apache 2 s 25584
GPL 2 » Apache 2 neesssssssssss 16939
EPL1 » GPL3 msssssss 12024
EPL1» GPL2 mm 2970
MPL 1.1 » LGPL 2.1 == 2368
MPL 1.1 » AGPL3 m 2140
Apache 2 » MPL 1.1 ® 1345
AGPL 3 » Apache 2 ® 1037
MPL 1.1 » GPL3 & 870
MPL 1.1 » LGPL 3 1 667
GPL3» GPL2 1 375
Apache 1.1 » GPL 3 152
MPL 1.1 » GPL 2 122
EUPL 1.1 » Apache2 76
MPL 1 » GPL 2 66
Apache 1.1 » GPL2 = 49
CPL1» GPL3 38
Artistic 1 » GPL3 | 25
MPL1» AGPL3 15
Apache 2 » MPL 1 11
AGPL3» GPL2 8
MPL 1.1 » LGPL 2 8
MPL 1 » LGPL 2.1 1
EUPL 1.1 » GPL3 1

0 10000 20000 30000 40000 50000 60000 70000
Number of Violations

License Pair

Fig. 21 Most popular Type 1 license violation pairs

Figures 21, 22, and 23 summarize the most common license violation pairs which occurred
for all three license violation categories. The most common Type 1 violation which we
observed is code published under the Apache 2 license being incorporated into GPL 2 licensed
code. This violation is not surprising for two reasons. First, many software developers are
simply not aware nor well-versed in open source license compliance, and as these are the two

EPL 1 » Apache 2 » GPL 3 s 254447
MPL 1.1 » Apache 2 » GPL 3 mmmm 26461
Apache 1.1 » Apache 2 » GPL3 ® 6404
Apache 2 » MPL 2 » GPL 2 704
CPL 1 » Apache 2 » GPL 3 130
GPL 3 » LGPL 3 » Apache2 | 5
Apache 2 » MPL 2 » MPL 1 2
0 50000 100000 150000 200000 250000 300000
Number of Violations

License Triple

Fig. 22 Most popular Type 2 license violation pairs

@ Springer

Software Quality Journal

MPL 1.1 + LGPL 2.1 » Apache 2 547089
AGPL 3 + Apache 2 » GPL 3 mmm 37495
MPL 1.1 + LGPL 3 » Apache 2 mm 24821
Apache 2+ GPL2 » GPL3 m 21975
GPL 2 + Apache 2 » GPL 3 m 21975
Apache 1.1 + MPL 1.1 » Apache 2 839
MPL 1+ LGPL 2.1 » Apache 2 = 688
Apache 2+ MPL 1.1 » MPL2 = 34
Apache 2+ MPL 1 » MPL2 32
Apache 1.1 + MPL 1 » Apache 2 16

0 100000 200000 300000 400000 500000 600000
Number of Violations

License Triple

Fig. 23 Most popular Type 3 license violation pairs

of the most popular licenses in the world, this pairing reflects their usage in the wild. Second,
there is likely some confusion about Apache 2’s compatibility with the GPL. On the GNU
website, the Free Software Foundation publishes a list of licenses that are compatible with the
GPL. This page shows Apache 2 in green (meaning compatible), but in the license discussion,
the authors explain that Apache 2 is only compatible with GPL 3, not GPL 2 (F. S. Foundation
2014).

A more detailed analysis of the reasons why the number of transitive license violations is
significantly larger compared to direct violations revealed: (1) Type 1 license compatibility/
incompatibility are easier to verify/detect. That is, it is much more likely that a developer will
check for license compliance when only two licenses are involved. (2) Transitive violation
types, on the other hand, have not been considered in the research community prior to this
work and may very well be acceptable or be clearly identifiable as such. For example, the European
Union Public License (EUPL) explicitly states which licenses it is compatible with. This is a
known compatibility. Whereas for transitive interactions, the EUPL may then be imported into an
intermediary project, say a project under the Licence Libre du Québec — Réciprocité (LiLiQ-R),
which is then imported into a tertiary project under Common Development and Distribution
License (CDDL). Each step (EUPL to LiLiQ, and LiLiQ to CDDL) is known to be compatible.
But the EUPL does not explicitly state that it is compatible with the CDDL. This chain of licenses
may be flagged as a violation by our approach. Yet this chain could, in fact, be perfectly lawful (a
false-positive, verifiable by a lawyer). Our approach will, however, flag such a dependency chain
as a potential violation. This triple is neither a known compatibility nor known incompatibility and
thus is one of the reasons why there are more Type 2 violations found.

Identification of Type 3 violations becomes even more difficult to detect since their detection
largely depends on how licenses define derivative works and conditions for reusing these libraries.
Libraries can be used by either including the actual source code or through linking (e.g., through a
jar file). Linking of a library can be static (compile-time) or dynamic (run-time). For example,
LGPL requires each project to be an “independent work that stands by itself, and includes no
source code from [the other].” In this scenario, it is perfectly acceptable to combine the compiled
code, however (Kuhn et al. 2016). So basically, the question is whether a derivative work is created
or not, when combining dependencies into a new project. Derivative works come into play only
when the licensed software is copied, distributed, or modified. Additional research is needed to
further clarify legal and license compliance issue when using these open source licenses. However,

@ Springer

Software Quality Journal

Table 8 License violation counts in selected projects

Project No. of simple No. of transitive No. of compound
violations violations violations

commons-fileupload 1.0
commons-fileupload 1.1
commons-fileupload 1.2
commons-fileupload 1.2.1
commons-fileupload 1.2.2
commons-fileupload 1.3
Apache CXF WS Security 2.4.1
Apache CXF WS Security 2.4.4
Apache CXF WS Security 2.4.6
Apache CXF WS Security 2.6.3
Apache CXF WS Security 2.7.0
Struts 1.2.4

Struts 1.2.8

Struts 1.2.9

—_—
(= - e = = e = e =2 S S e)
DO O DD OO
[=lelel-ls = E=-E-holeloReNe s

as can be noted, all three types of violations can exist in projects. Thus, simple, transitive, and
complex license violations are problems that occur in open source projects and can potentially
affect the trustworthiness of components and libraries being reused in software projects.

In what follows, we report on license violation results which we observed for the selected
four projects of our trustworthy study. Table 8 provides an overview of the number of license
violations detected in these projects. Only four (4) releases of Commons Fileupload intro-
duced violations in client applications. No license violations are reported for the projects due
to the lack of license information in the analyzed client applications. Results, although
incomplete, confirm our previous claim that violations are problems that occur in open
source projects.

5.4 Identifying and measuring API breaking changes

Approach As previously mentioned in our study setup (Section 5.1, Fig. 12), we extract the
source code and versioning information of the four projects from GitHub and SVN. For each
successive pair of releases of a given project, we then identify the introduced breaking and
non-breaking changes using the VTracker'” tool. In order to be able to reuse the analysis
results for further analysis, we take advantage of our ontological knowledge modeling
approach and extend our knowledge base to include the analysis results. Developers can
now access this information, using SPARQL queries, to derive potential direct and indirect
impacts of breaking changes on their client applications. In what follows, we show some of the
main rules and queries used to derive the BCD and BCI measures.

BCD inference For computing the BCD scores of the projects in our dataset, we define a
SWRL rule (see Fig. 24), which infers the BCD score from the breaking and non-breaking
change counts. Figures 25 and 26 detail the queries for computing the breaking and non-
breaking change measures of a project.

'7 https://users.encs.concordia.ca/~nikolaos/vtracker.html

@ Springer

https://users.encs.concordia.ca/~nikolaos/vtracker.html

Software Quality Journal

Release (?r), hasBreakingChangeCount (?r, Z?bcc),

hasNonBreakingChangeCount (?r, ?nbcc), divide(?bcd, ?bcc, ?nbcc) —
hasBCD (?r, ?bcd)

Fig. 24 The rules to infer the BCD measure

CONSTRUCT{?release ?totalBreakingChanges }
WHERE {
{

SELECT ?release count (?breakingChange) as ?totalBreakingChanges

WHERE {
?breakingChange
?breakingChange ?api.
?release ?api.

}GROUP BY ?release
+}

Fig. 25 SPARQL query for inferring the total number of breaking changes in a project

CONSTRUCT{?release ?totalNonBreakingChanges
}
WHERE {
{
SELECT ?release count (?nonbreakingChange) as ?totalNonBreakingChanges
WHERE {
?nonbreakingChange
?nonbreakingChange ?api.
?release ?api.
}GROUP BY ?release
1}

Fig. 26 SPARQL query for inferring the total number of non-breaking changes in a project

BClgirect and BClipgirect inference The queries in Figs. 27 and 28 take advantage of the inference
services to derive both the direct and indirect BCI scores from a project and its dependencies.
The query in Fig. 25 first identifies two unique releases of the same project for which breaking
changes have been populated into the triplestore. It then identifies any usage of the found binary
incompatible APIs within the client. These queries are based on Eqgs. 6 and 7 in Section 4.3.

Findings and discussion Figure 29 shows an example of a bug'® reported in Eclipse Orbit."
Orbit depends on ASM,* a Java bytecode manipulation library. ASM introduced breaking
changes in its later releases, such as ClassVisitor being changed from an interface (version 3.X)
to a class in version 4.0. This change is a major change in the API and therefore breaking the
older 3.X API releases.

We illustrate how our ontology-based API dependency measures can aid developers in
detecting and dealing with such breaking changes. For the analysis, we extract and populate
facts about the breaking changes between different versions of ASM releases and the source
code of all projects which depend on ASM releases (8109 dependencies in total). Based on the

'8 https://dev.eclipse.org/mhonarc/lists/cross-project-issues-dev/msg1 0487 html
19 https://www.eclipse.org/orbit/
20 http://asm.ow?2.org/

@ Springer

https://dev.eclipse.org/mhonarc/lists/cross-project-issues-dev/msg10487.html
https://www.eclipse.org/orbit/
http://asm.ow2.org/

Software Quality Journal

CONSTRUCT{?release ?directBCI }
WHERE {
{
SELECT ?release ?directBCI
WHERE {
BIND ((?usedBreakingChanges/?bcc) AS ?directBCI) .
{
SELECT ?release count (?breakingApi) as ?usedBreakingChanges ?bcc
WHERE {
?breakingChange .
?breakingChange ?breakingApi.
?dependent ?breakingApi.
?dependent ?bcc.
?client ?api.
?api ?breakingApi.
}GROUP BY ?release

}
1}

Fig. 27 SPARQL query for inferring the BClg;t measure in a project

extracted source code and dependency information, the earlier introduced SPARQL queries
can now be used to identify the potential direct and indirect impacts of ASM breaking changes
on client applications.

Figure 30 shows the distribution of (a) breaking changes, (b) non-breaking changes, and (c)
breaking change densities (BCD) across all selected 20 ASM releases. Figure 30d reports on
the impact of the ClassVisitor API breaking change on client applications. Further-
more, this particular change can potentially affect on average 50 different API
elements and as many as 225 elements in a single client application. The reported
impact set returned by our approach would include clients which reuse the
ClassVisitor API either directly (through an implementation of the interface) or
indirectly (through transitive inheritance or method invocations).

CONSTRUCT{?client ?indirectBCI }
WHERE {
{
SELECT ?client ?indirectBCI
WHERE {
BIND ((?usedBreakingChanges/?bcc) AS ?indirectBCI).
{
SELECT ?client count (?clientAPIEntity) as ?usedBreakingChanges count (?breakingChange) as ?bcc

WHERE {
#identify use of breaking change entity in clien
?client ?clientAPIEntity.
{?clientAPIEntity ?currentAPIElement} UNION
{?clientAPIEntity ?priorAPIElement} .

{

SELECT 2?client, 2dependency ?asml, ?asm2

fy different rel f the same project for which breaking es exist
?dependencyl; ?dependency?.

?breakingChange a

?breakingChange ?priorAPIElement; ?currentAPIElement.

?dependencyl ?currentAPIElement.

?dependency2 ?priorAPIElement.

FILTER (?dependencyl != ?dependency2) .

Fig. 28 SPARQL query for inferring the BClj,giee measure in a project

@ Springer

Software Quality Journal

Re: [cross-project-issues-dev] Two "late breaking” changes coming in Orbit bundles: ICU4J,

and org.objectweb.asm

From: Ed Willink <ed @xxXXXXXXXXXXXX>

Date: Tue, 08 Apr 2014 13:24:28 +0100

Delivered-to: cross-project-issues-dev@eclipse.org

User-agent: Mozilla/5.0 (Windows NT 6.0; r1:24.0) Gecko20100101 Thunderbird 24.4.0

2. org.objectweb.asm

This probably effects far fewer people, but is a much larger, and "breaking" change. Not "API
breakage", no change to your code

|There 1s a breaking API change that has impacted Xtext and OCL. |

The problem 1s that ClassVisitor changes from an interface n ASM 3 .x to a class in ASM 4.x.

Fortunately the problem only shows up when a shared class loader tries to load the other library. This does not
happen on equinox if plugins keep ASM out of their AP, as both Xtext and OCL do.

["The problem occurs in standalone applications that only have one class loader and so use the first ASMjon the
classpath. Applications need to tolerate whatever other standalone contributors or legacy startup commands may
inflict. Therefore Xtext [1] and OCL [2] are both evolving to tolerate a range of ASM libraries.

Applications should be aware that they must not export ASM and must tolerate a wrong ASM when running
standalone.

Fig. 29 An example of a reported bug showing how a breaking change in the ASM library impacts Orbit and its
dependent projects

5.5 Assessment process

The above sub-sections described how we can identify and measure different attributes of
trustworthiness by taking advantage of our unified ontological knowledge representation and

S4—= o
L] g -
o] @ o D
S 7 9 - e
i 8
- i
N o o~ o
(a) Number of breaking changes (b) Number of non-breaking changes
g4 0 o °
e : & 7 o
g N : ~
o
A o
< o -
© - -
o '
] c1 0
o
@®
o e o 4

(c) BCD of ASM libraries (d) BCIof the ClassVisitor API in ASM libraries
Fig. 30 Distribution of breaking changes and their impacts in the analyzed ASM libraries

@ Springer

Software Quality Journal

Trustworthiness Measures

- # Vulnerabilities
- aggregated Severity scores

- WVDinherit
- WVDoverall

Trustworthiness
Attributes

o
Trustworthiness Subitactors

Tustwortines e e Vons
Dimention Factors TTT— rrr—" -direct b
- Product - Legality C Stability
s Reusbity__|hassbtactoro Ssabiiy_ sl
~= J =~ - - # breaking changes

- # nonbreaking chang
switched dependencies

dependencies

-Defined Relation———— =~
— — — ~Inferred Relation— — — -~

Fig. 31 Overview of relations in the semantic OntTAM domain model

Semantic Web reasoning services. The OntTAM assessment process further integrates these
scores across attributes and sub-factors. For the actual assessment process, we first compute
the fuzzy score for each measure individually and then aggregate these scores to calculate the
attribute, sub-factors, factors, and dimension assessment scores. Figure 31 gives a complete
overview of how the sub-factors, attributes, and measures are related and used to derive our
trustworthiness assessment.

The effect of the fuzzification on the assessment scores typically increases with assessment
abstraction levels (e.g., quality dimension scores vs. attribute scores). Figure 32 shows the
rules we used to create the fuzzified score for the WVD measure and Fig. 33 provides example
rules we used to combine the fuzzified LVC and WVD scores into a score for the Impact
attribute.

Using the property chain axioms explained in Section 4.2.2, one can now automatically
infer trustworthiness scores from the populated measures of any given project. Figure 34
provides a list of sample queries used for integration and fuzzification.

Findings and discussion Table 9 presents a summary of trustworthiness scores from the three
software trustworthiness categories we consider in the scope of this work: API breaking
changes, security vulnerabilities, and license violations.

FUNCTION_BLOCK WVD RULEBLOCK WVD_SCORE_RULES
VAR_INPUT RULE 0 : IF WVD_Measure IS VERYLOW AND WVD_Weight IS LOW ~ THEN WVD_Score IS EXCELLENT ;

WVD_Measure: REAL;

WVD_Weight: REAL; RULE 1 : IF WVD_Measure IS VERYLOW AND WVD_Weight IS MEDIUM THEN WVD_Score IS EXCELLENT ;
END_VAR

RULE 2 : IF WVD_Measure IS VERYLOW AND WVD_Weight IS HIGH THEN WVD_Score IS VERYGOOD ;

VAR_OUTPUT

WVD_Score: REAL; RULE 3 : IF WVD_Measure IS LOW AND WVD_Weight IS LOW THEN WVD_Score IS EXCELLENT ;
END_VAR

RULE 4 : IF WVD_Measure IS LOW AND WVD_Weight IS MEDIUM THEN WVD_Score IS VERYGOOD ;
FUZZIFY WVD_Measure

TERM VERYLOW := (0.0,1.0) (1.04,1.0) (2.11.0.0) ; RULE 5 : IF WVD_Measure 1S LOW AND WVD_Weight IS HIGH THEN WVD_Score IS AVERAGE ;

TERM LOW := (1.90,0.0) (2.975.1.0) (4.14,0.0) ;

TERM AVERAGE := (3.73,0.0) (4.91,1.0) (6.17.0.0) ; RULE 6 : IF WVD_Measure 1S AVERAGE AND WVD_Weight IS LOW THEN WVD_Score IS VERYGOOD
TERM HIGH := (5.55,0.0) (6.845,1.0) (8.20,0.0) :

TERM VERYHIGH := (7.38,0.0) (8.78,1.0) (11.29,1.0) ; RULE 7: IF WVD_Measure IS AVERAGE AND WVD_Weight IS MEDIUM THEN WVD_Score IS AVERAGE ;

END_FUZZIFY
RULE 8 : IF WVD_Measure IS AVERAGE AND WVD_Weight IS HIGH THEN WVD_Score IS POOR;
FUZZIFY WVD_Weight

TERM LOW := (0.0,1.0) (0.5,1.0) (2.69,0.0) ; RULE 9 : IF WVD_Measure 1S HIGH AND WVD_Weight IS LOW THEN WVD_Score IS AVERAGE ;
TERM MEDIUM := (2.56,0.0) (4.75.,1.0) (7.05.0.0) ;
TERM HIGH = (6.69.0.0) (9.0.1.0) (12.0,1.0) : RULE 10 : IF WVD_Measure IS HIGH AND WVD_Weight IS MEDIUM THEN WVD_Score IS POOR ;

END_FUZZIFY
RULE 11 : IF WVD_Measure 1S HIGH AND WVD_Weight IS HIGH THEN WVD_Score IS VERYPOOR;

DEFUZZIFY WVD_Score
TERM VERYPOOR :=(6.5,0.0) (7.5,1.0) (9.0,1.0) ; RULE 12 : IF WVD_Measure IS VERYHIGH AND WVD_Weight IS LOW THEN WVD_Score IS POOR ;
TERM POOR :=

0.0) (6.25.1.0) (7.22,0.0) :
4.14,0.0) (5.0,1.0) (5.9.0.0) ; RULE 13 : IF WVD_Measure IS VERYHIGH AND WVD_Weight IS MEDIUM THEN WVD_Score IS VERYPOOR ;
! =(2.95,0.0) (3.75,1.0) (4.6,0.0) ;
TERM EXCELLENT := (0.0,1.0) (2.5,1.0) (3.28,0.0) ; RULE 14 : IF WVD_Measure IS VERYHIGH AND WVD_Weight IS HIGH THEN WVD_Score IS VERYPOOR ;

METHOD : COG; END_RULEBLOCK
END_DEFUZZIFY
END_FUNCTION_BLOCK

Fig. 32 Sample FCL file for creating fuzzy scores for the WVD measure

@ Springer

Software Quality Journal

RULEBLOCK IMPACT _SCORE_RULES

RULE 0 : IF LVC_Score IS EXCELLENT AND WVD_Score IS VERYPOOR THEN IMPACT_Score IS AVERAGE ;
RULE 1 : IF LVC_Score IS VERYGOOD AND WVD_Score IS VERYPOOR THEN IMPACT_Score IS POOR ;
RULE 2 : IF LVC_Score IS AVERAGE AND WVD_Score IS VERYPOOR THEN IMPACT_Score IS POOR ;

RULE 3 : IF LVC_Score IS POOR AND WVD_Score IS VERYPOOR THEN IMPACT_Score IS VERYPOOR ;

RULE 4 : IF LVC_Score IS VERYPOOR AND WVD_Score IS VERYPOOR THEN IMPACT _Score IS VERYPOOR;

END_RULEBLOCK

END_FUNCTION_BLOCK

Fig. 33 Sample FCL file for integrating the LVC and WVD fuzzy scores for the Impact attribute

Query 1: At sub-factor level
SELECT distinct ?project ?subfactorScore

WHERE {
?impactAttribute .
?project ?subfactorAttribute.
?subfactorAttribute ?subfactorScore.

}

Query 2: At factor level
SELECT distinct ?project ?factorScore

WHERE {
?factorAttribute .
?project ?factorAttribute.
?factorAttribute ?factorScore.

Fig. 34 SPARQL query illustrating the inference of overall trustworthiness scores

Tables 10 and 11 show the results of our queries in Fig. 34 for our studied projects and
demonstrate the effectiveness of our OntTAM model. The results indicate that despite the
presence of security, licensing, and breaking change concerns, almost all projects have excellent
trustworthiness scores at the presented sub-factor and factor levels. This is due to how the score
categories are distributed over the fuzzy scale. In our work, the categories are distributed
equally from 0 to maximum measure value recorded in our dataset. For example, the maximum
WVD measure in our dataset is 11.29, making all WVD measures under 2.95
excellent. The complete scale distributions for all our measures can be found in the
FCL files online.”'

It should be noted that the tables do not report on the final overall trustworthiness score
since this score would require a particular assessment context and an instantiation of our
OntTAM assessment model with more measures, attributes, and sub-factors, which we omitted
in this study due to space limitations.

21 https:/github.com/segps/segps-code/tree/master/segps.onttam/sre/main/resources/segps/onttam/fcl/measures

@ Springer

https://github.com/segps/segps-code/tree/master/segps.onttam/src/main/resources/segps/onttam/fcl/measures

Software Quality Journal

Table 9 Overview of selected trustworthiness measure scores

Project WVD LvC BCD

Numerical Fuzzified Numerical ~ Fuzzified Numerical — Fuzzified

score score score score score score
commons-fileupload 1.0 8.78 VeryPoor 0 Excellent 0 Excellent
commons-fileupload 1.1 8.46 VeryPoor 0 Excellent 2.14 VeryPoor
commons-fileupload 1.2 6.05 Poor 4 VeryPoor 0.64 Poor
commons-fileupload 1.2.1 5.49 Average 14 VeryPoor 0.49 Average
commons-fileupload 1.2.2 5.31 Average 19 VeryPoor 0.48 Average
commons-fileupload 1.3 3.14 VeryGood 4 VeryPoor 0.6 Average
Apache CXF WS Security 2.4.1 1.25 Excellent 0 Excellent 0.08 Excellent
Apache CXF WS Security 2.4.4 1.11 Excellent 0 Excellent 0.95 VeryPoor
Apache CXF WS Security 2.4.6 1.21 Excellent 0 Excellent 0.89 VeryPoor
Apache CXF WS Security 2.6.3 1.49 Excellent 0 Excellent 0.86 VeryPoor
Apache CXF WS Security 2.7.0 1.87 Excellent 0 Excellent 0.88 VeryPoor
Struts 1.2.4 1.25 Excellent 0 Excellent 0.9 VeryPoor
Struts 1.2.8 2.02 Excellent 0 Excellent 0.44 Average
Struts 1.2.9 1.04 Excellent 0 Excellent 0.32 VeryGood

6 Related work
6.1 Library recommendation and migration techniques

Many third-party libraries are available for download to reduce development time by providing
access to features ready for use. To help developers take advantage of these libraries, several
techniques have been proposed that provide automatic library recommendations to developers.
Common to these approaches is that they rely on criteria such as popularity and stability. Some
of them even rely on the client’s context (e.g., mining previous usage of libraries) for their
recommendations. For example, Mileva et al. (2010) study the popularity of an API. Their
approach studies the rate at which dependencies adopt or switch from OSS libraries. Hora and
Valente (2015) build on Mileva’s approach to introduce four distinct API popularity trends:

Table 10 Example of inferred trustworthiness scores at sub-factor level

Project Security SubFactor Legality SubFactor Reliability SubFactor

Numerical — Fuzzified Numerical — Fuzzified Numerical — Fuzzified

score score score score score score

commons-fileupload 1.0 5.01 Average 1.45 Excellent 0 Excellent
commons-fileupload 1.1 5.01 Average 1.45 Excellent 0 Excellent
commons-fileupload 1.2 5.01 Average 145 Excellent 0 Excellent
commons-fileupload 1.2.1 1.45 Excellent 1.45 Excellent 0 Excellent
commons-fileupload 1.2.2 1.45 Excellent 1.45 Excellent 0 Excellent
commons-fileupload 1.3 3.77 VeryGood 1.45 Excellent 0 Excellent
Apache CXF WS Security 2.4.1 145 Excellent 1.45 Excellent 0 Excellent
Apache CXF WS Security 2.4.4 145 Excellent 1.45 Excellent 0 Excellent
Apache CXF WS Security 2.4.6 1.45 Excellent 1.45 Excellent 0 Excellent
Apache CXF WS Security 2.6.3 145 Excellent 1.45 Excellent 0 Excellent
Apache CXF WS Security 2.7.0 145 Excellent 1.45 Excellent 0 Excellent
Struts 1.2.4 1.45 Excellent 1.45 Excellent 0 Excellent
Struts 1.2.8 1.45 Excellent 1.45 Excellent 0 Excellent
Struts 1.2.9 1.45 Excellent 1.45 Excellent 0 Excellent

@ Springer

Software Quality Journal

Table 11 Example of inferred trustworthiness scores at factor level

Project Reusability factor
Numerical score Fuzzified score

commons-fileupload 1.0 0 Excellent
commons-fileupload 1.1 0 Excellent
commons-fileupload 1.2 0 Excellent
commons-fileupload 1.2.1 1.45 Excellent
commons-fileupload 1.2.2 145 Excellent
commons-fileupload 1.3 1.45 Excellent
Apache CXF WS Security 2.4.1 145 Excellent
Apache CXF WS Security 2.4.4 145 Excellent
Apache CXF WS Security 2.4.6 1.45 Excellent
Apache CXF WS Security 2.6.3 145 Excellent
Apache CXF WS Security 2.7.0 1.45 Excellent
Struts 1.2.4 1.45 Excellent
Struts 1.2.8 1.45 Excellent
Struts 1.2.9 1.45 Excellent

fast growth, constant growth, peak growth, and dead growth. Their approach is shown to be of
benefit to both library developers and clients. For example, library developers can be notified
when the popularity of their API begins to go down. Raemaekers et al. (2012) present four
stability metrics that calculate the stability of API interfaces. They demonstrate how the
metrics can be used by developers in deciding on libraries to reuse. The frequency of the
migration of API dependencies has also been used to determine the stability of an API by
Teyton et al. (2012), Hora and Valente (2015), and Mileva et al. (2009).

Other techniques exist which recommend various API elements (method calls, blocks of
code, etc.) of a software library to developers using heuristics that leverage various information
sources (source code, commit logs, etc.). Thung et al. (2013) propose an automated technique,
which combines association rule mining techniques and collaborative filtering to perform the
recommendation of libraries. Their approach recommends a number of likely relevant libraries
to developers of a target project based on the libraries used by other projects. McCarey et al.
recommend methods of software libraries to a developer by investigating the history of
methods that have been used in the past (McCarey et al. 2005).

In addition, several API documentation and tutorial analysis approaches have been
introduced to aid developers in understanding how features provided by software libraries
can be correctly utilized. For example, Jiang et al. (2017) introduced an unsupervised machine
learning approach, which identifies and recommends parts of API tutorials that are relevant to
a developer’s API usage context. Maalej and Robillard (2013) analyzed API reference
documentation, to identify and report on patterns of knowledge found in API documentation,
with the goal to help practitioners evaluate and organize the content of their API
documentation.

The abovementioned techniques mostly focus on the use reuse of external libraries. Our
work aims to provide developers with an approach to assess how much trust can be placed on a
recommended software library. Our work can be seen complementary to such existing library
recommendation systems, in terms of extending these existing recommendation criteria by
making quality in the form of trustworthiness an integrated part of the library
recommendations.

@ Springer

Software Quality Journal

6.2 Impact of API breaking changes

A significant amount of research exists that studied real-world systems and how they are
impacted by API changes and the ripple effects of these changes (Raemackers et al. 2012;
Raemaekers et al. 2014; Robbes et al. 2012; Cossette and Walker 2012; Kapur et al. 2010).
Many approaches have been proposed that apply impact analysis in order to mitigate change
impacts on client applications. Dig and Johnson (2006) define a catalog of breaking and non-
breaking changes. They observed that refactoring accounts for 80% of the changes that break
client systems. Raemaekers et al. (2012) present four stability metrics based on method
changes and removals. The authors investigate their metrics behavior by performing a
historical analysis of stability and impact on 140 clients of the Apache Commons Library.
Jezek et al. (2015) use a dataset of 109 Java programs and 564 program versions to analyze
binary compatibility in the context of OSGi-based systems. Xavier et al. (2017) conducted a
large empirical study on 317 real-world Java libraries, 9K releases, and 260K client applica-
tions to investigate the impact of API breaking changes on client applications. Decan et al.
observed that about 1 in every 20 updates to a CRAN package was a backward incompatible
change, accounting for 41% of the errors in released packages that depended on them (Decan
et al. 2016).

Complicated and changing dependencies are difficult to identify by developers (Artho et al.
2012) and have led to common expressions like “DLL hell” and “dependency hell.” In our
work, we extend the scope of our impact analysis of breaking changes to a more global scope,
in which the analysis goes beyond individual project boundaries.

6.3 Software security vulnerability identification

Different approaches for static vulnerability analysis and detection in source code exist, such as
Plate et al. (2015) who proposed a technique that supports the impact analysis of vulnerability
based on code changes introduced by security fixes. Nguyen et al. (2016) introduced an
automated method to identify vulnerable code based on older releases of a software system.
Cadariu et al. (2015) introduce in their Vulnerability Alert Service (VAS) an approach that
notifies users if a vulnerability is reported for software systems. In contrast to this existing
research, we provide a more holistic approach that supports an intra- and inter-project
dependency analysis. We take advantage of semantic reasoning services to infer implicit facts
about vulnerable code usages within the system and support bi-directional dependency
analysis—which also includes both impacts to external dependencies and vice versa. In
addition, our analysis results become an integrated part our knowledge base to be reused for
different analysis tasks.

6.4 Software license violation identification

Related studies into identifying software license violations can be categorized into two levels:
intra-project and inter-project.

At the intra-project level, studies aim to identify the introduction of license violations
introduced by having project files with different licenses. Di Penta et al. (2010) proposed
an approach to automatically track the licensing evolution of systems, identifying changes
in licenses and copyright years. They found that OSS projects do change licenses over
time and these changes were not just to new versions of the existing license. Sometimes,

@ Springer

Software Quality Journal

projects that switched licenses altogether had intended and unintended effects on
downstream users of these projects. As recently as 2015, research has been conducted
by Wu et al. (2015) on the evolution of the licenses specified in the header of each file,
with the explicit goal of finding license inconsistencies. They categorize the evolution of
licenses as a license addition/removal, upgrade/downgrade, or change. These categoriza-
tions are then used to judge whether the new modification/evolution of the license results
in an inconsistency.

Zhong and Mei (2017) have shown in their work that developers typically combine
APIs from different libraries to solve development problems. However, while such API
reuse reduces the coding effort, it also increases substantially the effort required in
identifying license violations at the inter-project level. Several researchers have studied
how code reuse (through cloning) and software components/libraries can lead to the
introduction of license violations. Using code clones to detect small-scale license viola-
tions has been investigated for example by Monden et al. (2011). They introduced three
quality metrics for code clone detection based on license violations. However, as part of
their evaluation, they did not detect any actual license violations in OSS. Instead, they
used license violations were merely used as a theoretical use case for their comparative
study. The Binary Analysis Tool (BAT) developed by Hemel et al. (2011) detects code
clones of OSS in proprietary binaries for the express purpose of finding violations of
popular GPL projects. The authors used the comparison of string literals, data compres-
sion, and binary deltas. Interestingly, BAT does find many true code clones but falls short
by leaving the verification as a manual process, i.e., whether a code clone is also a
license violation.

The work by German and Hassan (2009) is the most closely related to our work.
The authors created a “model to describe licenses and the implications of licenses on
the reuse of components.” Their model describes what usage scenarios result in a
derived work or not. Our work builds upon the existing body of knowledge for
license violations, by providing the first attempt to create a formal representation of
the license dependencies. The advantage of our ontological representation, being an
integrated part of our unified knowledge model, is the ability to extend and reuse our
license model for different types of analysis tasks, such as its seamless integration in
a trustworthiness assessment model.

6.5 Quality models

Assessing quality to improve the evolution of software systems has been addressed in existing
research through the introduction of software quality models. These models introduced quality
dimensions and classified quality factors that affect the development and maintenance of
software products. Among the most widely accepted quality assessment model is the ISO
9126%* software quality model standard which defines a quality model via a set of quality
characteristics and sub-characteristics that were believed to be the more representative and
relevant at the time of its introduction. As the complexity and vulnerability of software systems
grows as a result of their components being increasingly reused across project boundaries and
interconnected through networks and communication links, assessing the trustworthiness of
systems and their components plays an ever-increasing role. While security and

22 http://www.sqa.net/is09126.html

@ Springer

http://www.sqa.net/iso9126.html

Software Quality Journal

interoperability are already present in the ISO 9126 standard as “sub-factors” of functionality,
more recent quality models such as the ISO 25000 standard have extended the ISO 9126, by
making security and interoperability a main quality aspect of the standard.

In Hmood et al. (2012), the authors introduced an SE-Evolvable QUality Assessment Meta-
model (SE-EQUAM), a quality assessment model which is both evolvable and reusable. The
model introduces a set of complementary core requirements necessary for a model to be
considered an evolvable model: Model Reusability, Knowledge Modeling, Knowledge Popu-
lation, and Knowledge Exploration (Hmood et al. 2012). In this work, we adopt the model
evolvability criteria to derive our trustworthiness meta-model that is not only capable of
dealing with continuous change (in the model) but also allows for its reuse by simplifying
the instantiation of new domain model instances.

6.6 Trustworthiness models

Existing work on assessing the trustworthiness of OSS systems, for example, Taibi
(2008), Larson and Miller (2005), and Tan et al. (2008), have attempted to quantify
OSS trustworthiness of software systems in situ, but results are limited to artifacts in
the development environment; external and heterogeneous knowledge sources are not
considered in these approaches. Other researchers Pfleeger (1992) and Yang et al.
(2009) seek to analyze and predict aspects of trustworthiness during software devel-
opment, while other work has focused on introducing new evaluation criteria to better
capture the nature of OSS’s components, for example, the QualiPSo model of OSS
trustworthiness (del Bianco et al. 2009), and Boland et al. (2010) quantify and assess
risk based on the Structured Assurance Case Model (SACM) (Rhodes et al. 2010) to
determine software trustworthiness. The main objective of these models is to apply
their quality (trustworthy) factors to allow for a standardized product comparison
across different projects and domains. Most trustworthiness assessment models share
a generic structure, template, or frame for assessing software security quality that
corresponds to a hierarchy or tree structure with multiple levels and a set of con-
straints that define the relationship between one level and the next one. However,
regardless of the kind of components, these syntactic proposals mainly address and
mostly focus on the evaluation criteria and decision-making phases, setting aside the
practical problem of how to search for and locate components and to assign suitable
information about them (Land et al. 2009). Also, a general concern in most of these
models is that they rely on the software product and traditional software lifecycle
artifacts. They do not necessarily consider external resources in their assessment such
as external vulnerability databases. As a result, there is no consensus on the applica-
bility of these trustworthiness models in industrial practice (Ayala et al. 2013).
While existing proposals for creating such meta-modeling assessment models focus on
adopting one or more of these existing quality models in one standard model, this may result in
an incomplete or unbalanced assessment, depending on the input. Using a meta-modeling
approach can address this challenge by quantifying the trustworthiness of software as a
“product” and specifying a domain model that captures and conceptualizes trustworthiness.
A domain model is a conceptualization of a problem domain in terms of its entities, properties,
relationships, and constraints. In software, several domain models exist that are capable of
representing and assessing predefined sets of trustworthiness, e.g., PAS 754:2014, QualiPSo
(del Bianco et al. 2009), and Boland et al. (2010). All these domain models share a common,

@ Springer

Software Quality Journal

while informal (non-machine-readable), structural representation of the trustworthiness they
are assessing. This lack of formalism and semantics limits the possible reuse and instantiation
for specific trustworthiness assessment contexts.

7 Threats to validity
7.1 Internal threats

Design quality One of the major benefits of our approach is the ability to seamlessly integrate
and reuse ontologies while ensuring the quality of the resulting knowledge model. Assessing
the quality of our ontology designs is an inherently difficult problem since what constitutes
quality depends on different non-functional requirements (e.g., reuse, usability, extensibility,
expressiveness, and reasoning support). We partly address this threat by using existing
reasoners (such as Pellet, Hermit, and JFact) and tools (OOPS!?® and the Neon Toolkit**) to
check our ontology design for taxonomic, syntactical, and consistency problems. To determine
if our ontology constraints were sufficient to identify incorrect data, we incrementally popu-
lated the ontologies with facts during the evaluation process. While the reasoners did not report
any inconsistencies in our ontologies, OOPS! reported a few problems in our ontologies which
violated some of the design rules in OOPS! rule catalog. However, the identified violations
were a result of missing license information and annotations (such as rdfs:label and
rdfs:comment) for some of our ontology elements.

Another potential threat to our approach is whether the set of concepts we
considered is sufficient to capture the semantics of the analyzed domains. There is
always a trade-off in the design of knowledge bases in terms of their expressivity and
their usefulness; an equilibrium should be established between the amount of infor-
mation that is sufficient to accomplish a task and the granularity of the knowledge
that should be available to produce useful results. We addressed this threat by
showing that our modeled concepts are sufficient to provide flexible analysis services
through the described case study experiments.

Completeness A potential threat to our approach is whether the set of measures we consid-
ered in our assessment as part of OntTAM evaluation is sufficient to capture reusability as a
trustworthiness factor. We addressed this threat by selecting our trustworthiness measures from
a well-established subset of existing trustworthiness models, such as PAS 754:2014, QualiPSo
(del Bianco et al. 2009), and Boland et al. (2010). While we only selected a very small subset
of these trustworthiness attributes, we believe this subset is sufficient to illustrate the applica-
bility of our assessment model. In particular, the objective of our study was not to verify the
assessment model for its completeness but rather to illustrate that OntTAM can be instantiated
to a given (user specified) assessment context. The study shows that instantiating and
extending OntTAM to support other requirements including new measures, attributes, or
sub-factors is a straightforward task.

3 http://oops.linkeddata.es/advanced.jsp
24 http://neon-toolkit.org/wiki/Download/2.5.2 html

@ Springer

http://oops.linkeddata.es/advanced.jsp
http://neon-toolkit.org/wiki/Download/2.5.2.html

Software Quality Journal

7.2 External threats

All systems are written in Java The application-level examples described in this paper are
limited in their scope to open-source Java projects in the Maven repository, and the results
obtained might not be applicable to other programming languages or build repositories. Given
that our modeling approach is based on different levels of abstraction, we also abstract
common aspects of source code and build dependencies in our knowledge model. We do
model the domain of object-oriented programming languages, software vulnerabilities, and
software licenses, and build repositories as individual domains of discourse in the domain-
specific layer of our knowledge model.

Definition of license violations and compliance Given the large number of licenses available
in the open source community, there exists currently no comprehensive conceptual framework
describing the dependencies among all these licenses. There is a need for involving both the
development community and intellectual copyright experts to consolidate and redefine the
dependencies among the various open source licenses. The objective of our work is to formalize
and conceptualize license violations as a domain of discourse at the TBox level. Actual license
dependencies can be inferred once the ontology is populated (ABox) with available license
dependency information, therefore allowing us to take advantage of ontologies and their ability
to deal with incremental knowledge population and incomplete knowledge inference.

8 Conclusion and future work

The software engineering landscape has changed over the last decade with projects and
organizations increasingly taking advantage of the plethora of features and functionality
provided by existing third-party libraries and components. However, the reuse and therefore
dependency on such external libraries can affect a project’s overall quality through security
vulnerabilities, license violations, and breaking changes. In order to address some of these
challenges, we introduce OntTAM a trustworthiness assessment model which is an instantia-
tion of our SE-EQUAM assessment model. OntTAM takes advantage of our existing unified
knowledge representation of different SE knowledge resources and extends these knowledge
bases to allow for an automated analysis and assessment of trustworthiness quality attributes.
We argue that ontologies not only promote and support the conceptual representation of
knowledge resources in software ecosystems but also allow us to take advantage of semantic
reasoning during the assessment of trustworthiness quality factors. We further present a
concrete instantiation of our assessment model that not only provides a formal modeling of
trustworthy quality attributes but can also be extended/customized to specific stakeholder
needs. We illustrate how a concrete instantiation of OntTAM for a small subset of sub-factors,
attributes, and measures related to the trustworthiness of reusable components can be created.
The measures which we include in the study are API breaking changes, security vulnerabil-
ities, and license violations.

As part of our future work, the assessment process presented in this paper could be
extended in several ways. Enriching existing online software repositories with trustworthiness
scores to allow and automate the recommendation of trustworthy APIs directly in a program-
mer’s IDE would be one avenue of future work. Also, a detailed user study to qualitatively
validate the applicability of our model in actual project contexts is needed.

@ Springer

Software Quality Journal

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

References

Algahtani, S. S., Eghan, E. E., & Rilling, J. (2016). SV-AF—a Security Vulnerability Analysis Framework, in
2016 IEEE 27th International Symposium on Software Reliability Engineering (ISSRE), pp. 219-229.
Algahtani, S. S., Eghan, E. E., & Rilling, J. (2017). Recovering semantic traceability links between APIs and
security vulnerabilities: an ontological modeling approach. /0th IEEE International Conference on Sofiware

Testing, Verification and Validation.

Artho, C., Suzaki, K., Di Cosmo, R., Treinen, R., Zacchiroli, S., & A. P. S. Distributions (2012). Why do
software packages conflict?, 141-150.

Atkinson, C., Gutheil, M., & Kiko, K. (2006). On the relationship of ontologies and models. Proc. 2nd Work.
MetaModelling Ontol. WoMMO06 LNI P96 Gesellschafi fur Inform. Bonn, 47-60.

Ayala, C., Franch, X., Conradi, R., Li, J., & Cruzes, D. (2013). Developing software with open source sofiware
components. Finding source code on the web for remix and reuse (pp. 167-186). New York: Springer New York.

Bergel, A., Denier, S., Ducasse, S., Laval, J., Bellingard, F., Vaillergues, P., Balmas, F., & Mordal-Manet, K.
(2009). SQUALE—Software QUALity Enhancement. 2009 13th European Conference on Software
Maintenance and Reengineering, 285-288.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web. Scientific American, 284(5), 34-43.

Boland, T., Cleraux, C., & Fong, E. (2010). Toward a preliminary framework for assessing the trustworthiness of
software (pp. 1-31). Gaithersburg: National Institute of Standards TechnologylInteragency/Internal Report,
U.S. Department of Commerce.

Cadariu, M., Bouwers, E., Visser, J., & Van Deursen, A. (2015). Tracking known security vulnerabilities in proprietary
software systems. 2015 IEEE 22nd Int. Conf. Softw. Anal. Evol. Reengineering, SANER 2015 - Proc, 516-519.

Cingolani, P., & Alcala-Fdez, J. (2012). jFuzzyLogic: a robust and flexible Fuzzy-Logic inference system
language implementation. 2012 IEEE International Conference on Fuzzy Systems, 1-8.

Cossette, B. E. & Walker, R. J. (2012). Seeking the ground truth: a retroactive study on the evolution and
migration of software libraries. Proc. ACM SIGSOFT 20th Int. Symp. Found. Softw. Eng, 55:1-55.

Decan, A., Mens, T., Claes, M., & Grosjean, P. (2016). When GitHub meets CRAN: an analysis of inter-
repository package dependency problems. 2016 IEEE 23rd International Conference on Sofiware Analysis,
Evolution, and Reengineering (SANER), 493-504.

Di Penta, M., German, D. M., Guéhéneuc, Y.-G., and Antoniol, G. (2010). An exploratory study of the evolution
of software licensing, Proc. 32nd ACM/IEEE Int. Conf. Softw. Eng. - ICSE ‘10, vol. 1, p. 145.

Dig, D., & Johnson, R. (2006). How do APIs evolve? A story of refactoring. Journal of Sofiware Maintenance
and Evolution: Research and Practice, 18(2), 83—107.

DuCharme, B. (2011). Learning SPARQOL (2nd ed.). Sebastopol: O’Reilly Media.

F. S. Foundation (2014). Various licenses and comments about them. GNU Project [Online]. Available:
https://www.gnu.org/licenses/license-list.en.html. Accessed 22 July 2017.

Gao, J. Z., Chen, C., Toyoshima, Y., & Leung, D. K. (1999). Engineering on the Internet for global software
production. Computer (Long. Beach. Calif)., 32(5), 38-47.

German, D. M. & Hassan, A. E., (2009). License integration patterns: addressing license mismatches in component-
based development. 2009 IEEE 31st International Conference on Sofiware Engineering, 188-198.

Hemel, A., Kalleberg, K. T., Vermaas, R., & Dolstra, E. (2011). Finding software license violations through binary code
clone detection. Proceeding of the 8th working conference on Mining software repositories - MSR ‘11, 63-72.

Henderson-Sellers, B. (2011). Bridging metamodels and ontologies in software engineering. Journal of Systems
and Software, 84(2), 301-313.

Hmood, A., Schugerl, P., Rilling, J., & Charland, P. (2010). OntEQAM—a methodology for assessing
evolvability as a quality factor in software ecosystems. Defence R&D Canada - Valcartier, Valcartier
QUE (CAN), 8.

Hmood, A., Keivanloo, I., & Rilling, J. (2012). SEEEQUAM—an evolvable quality metamodel. 2012 IEEE 36th
Annual Computer Sofiware and Applications Conference Workshops, 334-339.

Hora, A. & Valente, M. T. (2015). apiwave: keeping track of API popularity and migration, 321-323.

1. E. Commission (2000). Programmable controllers—part 7: fuzzy control programming.

Jezek, K., Dietrich, J., & Brada, P. (2015). How Java APIs break—an empirical study. /nformation and Software
Technology, 65, 129-146.

@ Springer

https://www.gnu.org/licenses/license-list.en.html

Software Quality Journal

Jiang, H., Zhang, J., Ren, Z., & Zhang, T. (2017). An unsupervised approach for discovering relevant tutorial
fragments for APIs. 2017 IEEE/ACM 39th International Conference on Sofiware Engineering (ICSE), 38—48.

Kagdi, H., Yusuf, S., & Maletic, J. 1. (2006). Mining sequences of changed-files from version histories.
Proceedings of the 2006 international workshop on Mining software repositories - MSR ‘06, 47.
Kagdi, H., Collard, M. L., & Maletic, J. I. (2007). Comparing approaches to mining source code for call-usage patterns.
Fourth International Workshop on Mining Software Repositories (MSR’07:1CSE Workshops 2007), 20-26.
Kamiya, T., Kusumoto, S., & Inoue, K. (2002). CCFinder: a multilinguistic token-based code clone detection
system for large scale source code. /EEE Transactions on Sofiware Engineering, 28(7), 654-670.

Kapur, P., Cossette, B., & Walker, R. J. (2010). Refactoring references for library migration. ACM SIGPLAN
Notices, 45(10), 726.

I. Keivanloo, C. Forbes, J. Rilling, and P. Charland, (2011). Towards sharing source code facts using linked data.
Proceeding 3rd Int. Work. Search-driven Dev. users, infrastructure, tools, Eval. - SUITE ‘11, 25-28.

Kuhn, B. M., Sebro, A. K., & Gingerich, D. (2016). Chapter 10 The lesser GPL, Free Software Foundation & Software
Freedom Law Center, . [Online]. Available: https://copyleft.org/guide/comprehensive-gpl-guidech11.html.

del Bianco, V., Lavazza, L., Morasca, S., & Taibi, D. (2009). Quality of open source software: the QualiPSo
trustworthiness model, 199-212.

Land, R., Sundmark, D., Liiders, F., Krasteva, 1., & Causevic, A. (2009). Reuse with software components—a
survey of industrial state of practice. Form. Found. Reuse Domain Eng, 150-159.

Larson, D., & Miller, K. (2005). Silver bullets for little monsters: making software more trustworthy. /7" Prof.,
7(2), 9-13.

Maalej, W., & Robillard, M. P. (2013). Patterns of knowledge in API reference documentation. /EEE
Transactions on Software Engineering, 39(9), 1264-1282.

Mann, C. J. H. (2003). The description logic handbook—theory, implementation and applications. Kybernetes,
32(9/10), k.2003.06732iae.006.

McCall, J. A., Richards, P. K., & Walters, G. F. (1977). Factors in software quality. Volume I. Concepts and
definitions of software quality.

McCarey, F., Cinnéide, M. 0., & Kushmerick, N. (2005). Rascal: a recommender agent for agile reuse. Artificial
Intelligence Review, 24(3—4), 253-276.

McGuinness, D. L. and Van Harmelen, F. (2004). Owl web ontology language overview. W3C Recomm.
10.2004-03, 2004, 1-12.

Mileva, Y. M., Dallmeier, V., Burger, M., & Zeller, A. (2009). Mining trends of library usage. Proc. Jt. Int. Annu.
ERCIM Work. Princ. Softw. Evol. Softw. Evol, 57-62.

Mileva, Y. M., Dallmeier, V., & Zeller, A. (2010). Mining API popularity, Lect. Notes Comput. Sci. (including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 6303 LNCS, pp. 173-180.

Monden, A., Okahara, S., Manabe, Y., & Matsumoto, K. (2011). Guilty or not guilty: using clone
metrics to determine open source licensing violations. /EEE Software, 28(2), 42-47.

Nguyen, V. H., Dashevskyi, S., & Massacci, F. (2016). An automatic method for assessing the versions affected
by a vulnerability. Empirical Softiware Engineering, 21(6), 2268-2297.

Parnas, D. L. (1994). Software aging. ICSE ‘94 Proceedings of the 16th international conference on Software
engineering, 279-287.

Pfleeger, S. L. (1992). Measuring software reliability. /EEE Spectrum, 29(8), 56—60.

Plate, H., Ponta, S. E., & Sabetta, A. (2015). Impact assessment for vulnerabilities in open-source software
libraries. 2015 IEEE 31st Int. Conf. Softw. Maint. Evol. ICSME 2015 — Proc, 411-420.

Raemackers, S., Van Deursen, A., & Visser, J. (2012). Measuring software library stability through historical
version analysis. [EEE Int. Conf. Sofiw. Maintenance, ICSM, 378-387.

Raemacekers, S., Van Deursen, A., & Visser, J. (2014). Semantic versioning versus breaking changes: a study of the
maven repository. Proc. - 2014 14th IEEE Int. Work. Conf. Source Code Anal. Manip. SCAM 2014, 215-224.

Rahman, M. M., Roy, C. K., & Lo, D. (2016). RACK: automatic API recommendation using crowdsourced
knowledge. 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER). 349-359.

Rhodes, T., Boland, F., Fong, E., & Kass, M. (2010). Software assurance using structured assurance case models.
Journal of Research of the National Institute of Standards and Technology, 115(3), 209-216.

Robbes, R., Lungu, M., & Réthlisberger, D. (2012). How do developers react to API deprecation?. Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations of Sofiware Engineering - FSE ‘12, 1.

Samoladas, I., Gousios, G., Spinellis, D., & Stamelos, I. (2008). The SQO-OSS quality model: measurement
based open source software evaluation. Open Source Development, Communities and Quality, Boston, MA:
Springer US, 237-248.

Seedorf, S. & Mannheim, F. F. I. U. (2006). Applications of ontologies in software engineering. In
2nd International Workshop on Semantic Web Enabled Software Engineering (SWESE 2006).

@ Springer

https://copyleft.org/guide/comprehensive-gpl-guidech11.html

Software Quality Journal

Seneviratne, O., Kagal, L., Weitzner, D., Abelson, H., Berners-Lee, T., & Shadbolt, N. (2009). Detecting creative
commons license violations on images on the world wide web. WWW2009.

Taibi, D. (2008). Defining an open source software trustworthiness model. Proc 3rd Int Dr Symp Emperical
Software Eng, 4.

Tan, T., He, M., Yang, Y., Wang, Q., & Li, M. (2008). An analysis to understand software trustworthiness. 2008
The 9th International Conference for Young Computer Scientists, 2366-2371.

Teyton, C., Falleri, J. R., & Blanc, X. (2012). Mining library migration graphs. Proceedings of Work. Conf.
Reverse Eng. WCRE. 289-298.

Thung, F., Lo, D., & Lawall, J. (2013). Automated library recommendation. Proceedings of Workshop
Conference on Reverse Engineering. WCRE, 182—191.

Williams, J., & Dabirsiaghi, A. (2012). The unfortunate reality of insecure libraries (pp. 1-26). Appleton: Asp. Secur. Inc.

Witte R., Zhang Y., & Rilling J. (2007). Empowering software maintainers with semantic web technologies.
ESWC, 4519, 37-52.

Wu, Y., Manabe, Y., Kanda, T., German, D. M., & Inoue, K. (2015). A method to detect license inconsistencies in
large-scale open source projects. 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories, 324-333.

Wiirsch, M., Ghezzi, G., Hert, M., Reif, G., & Gall, H. C. (2012). SEON: a pyramid of ontologies for software
evolution and its applications. Computing, 94(11), 857-885.

Xavier, L., Brito, A., Hora, A., & Valente, M. T., (2017). Historical and impact analysis of API breaking changes:
a large-scale study. 2017 IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER), 138—147.

Yang Y., Wang Q., & Li M. (2009). Process trustworthiness as a capability indicator for measuring and improving
software trustworthiness. /CSP, 5543, 389-401.

Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning-III.
Information Sciences, 9(1), 43-80.

Zhang, Y., Witte, R., Rilling, J., & Haarslev, V. (2008). Ontological approach for the semantic recovery of
traceability links between software artefacts. IET Software, 2(3), 185.

Zhong, H. & Mei, H. (2017). An empirical study on API usages. /EEE Trans. Sofiw. Eng. (Early Access), 1.

Ellis E. Eghan is currently a Ph.D. candidate in the Department of Computer Science and Software Engineering
at Concordia University, Montreal, Canada. Prior to joining the Ph.D. program at Concordia, he received a
Master in Applied Computer Science from Concordia University and a Bachelor degree in Computer Science
from Kwame Nkrumah University of Science and Technology in Ghana. His research is mainly focused on
improving and supporting software engineering tasks using semantic analysis of software build systems through
semantic web techniques. He has currently published three papers in major refereed international journals and
conferences.

@ Springer

Software Quality Journal

Sultan S. Algahtani is currently a Ph.D. candidate in the Department of Computer Science and Software
Engineering at Concordia University, Montreal, Canada. Prior to joining the Ph.D. program at Concordia, he
received a Master in Information Systems Security from Concordia Institute for Information Systems Engineer-
ing (CIISE) in Montreal, Canada, and a Bachelor degree in Computer Science from Imam Mohammad bin Saud
University in Riyadh, Saudi Arabia. Sultan’s research as a member of the Ambient Software Engineering Group
(ASEG) is mainly focused on improving and supporting software engineering tasks using semantic analysis of
software security vulnerability databases through semantic web technologies. Sultan’s contributions published so
far during his Ph.D. research five articles in major refereed international journals and conferences.

Christopher Forbes is currently a Master student in the Department of Computer Science and Software
Engineering at Concordia University, Montreal, Canada. Prior to joining the Master’s program at Concordia,
he received a Bachelor degree in Computer Science from University of Ontario Institute of Technology. His
research is mainly focused on improving and supporting software engineering tasks using semantic web
techniques. He has currently co-published four papers in major refereed international journals and conferences.

@ Springer

http://aseg.cs.concordia.ca/
http://aseg.cs.concordia.ca/

Software Quality Journal

Dr. Juergen Rilling is a Professor in the Department of Computer Science and Software Engineering at
Concordia University, Montreal, Canada. He obtained a Diploma degree in Computer Science from the
University of Reutlingen, Germany, in 1991 and a M.Sc. in Computer Science from the University of East
Anglia, UK, in 1993. He received his Ph.D. from the Illinois Institute of Technology, Chicago, USA, in 1998.
The general theme of his research over the last 19 years has been on providing software maintainers with
techniques, tools, and methodologies to support the evolution of software systems. His current research focus is
on supporting the modeling and analysis of global software ecosystems. He has published over 100 papers in
major refereed international journals, conferences, and workshops. Dr. Rilling also serves on the program
committees of numerous international conferences and workshops in the area of software maintenance and
program comprehension and as a reviewer for all major journals in his research area.

@ Springer

	API trustworthiness: an ontological approach for software library adoption
	Abstract
	Introduction
	Motivating example
	Background
	External library reuse and its implications on project quality
	API breaking changes
	Software security vulnerabilities
	License violations

	Ontologies and Semantic Web
	Evolvable quality assessment metamodel (SE-EQUAM)

	Ontology-based trustworthiness assessment model (OntTAM)
	Artifact selection
	Model and model adjustment
	Modeling project trustworthiness
	Integration with other knowledge artifacts

	Measures and metrics
	Assessment process

	Case study
	Study setup
	Identifying and measuring software security vulnerabilities
	Identifying and measuring license violations
	Identifying and measuring API breaking changes
	Assessment process

	Related work
	Library recommendation and migration techniques
	Impact of API breaking changes
	Software security vulnerability identification
	Software license violation identification
	Quality models
	Trustworthiness models

	Threats to validity
	Internal threats
	External threats

	Conclusion and future work
	References

